1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
2.3 运行约束 储能电站的规划与运行决策存在强耦合关 系。在不同位置接入储能电站将对系统运行的安 全性、经济性与可靠性造成不同影响。为了支持网 侧储能选址定容方案的科学决策,需充分考虑储能 充放电特性、有功 / 无功综合潮流、电压偏移限制、供 电可靠性要求等关键因素,进行精细化的运行建 模。故引入运行约束如下。 2.3.1 功率平衡约束
摘要:Ghatghar 抽水蓄能电站 (PSP) 是一个历史悠久的水电项目,旨在满足日益增长的能源需求,并为能源储存和发电提供可持续的替代方案。该电站自 2008 年投入运营,采用创新的双水库系统,上坝和下坝采用碾压混凝土 (RCC) 技术建造,保证了高效快速的施工。这座 250 兆瓦的设施使用周期性水转移在非高峰时段储存能源,并在高峰需求时发电,因此采用了抽水蓄能的理念。现代元素包括弗朗西斯涡轮机、钢衬压力井和地下发电站,该发电站的建筑中充满了先进的发电机组和变压器系统。该项目的建设带来了重大困难,包括定居点的搬迁和输水系统、尾水隧道和辅助建筑的精确工程。总共征用了 320.096 公顷土地,将社会和环境问题与发展需求相协调。借助 RCC 技术和堆料输送机和高压水枪等专用设备,可以更快、更便宜、更高质量地建造大坝。在高峰需求期间,该工厂每天运行六小时,生产 150 万单位 (MU) 的电力,每年为电网贡献 469.5 GWh。它是能源负荷控制的重要组成部分,因为它在非高峰时段每天抽水七小时,消耗的电量超过必要电力。除了技术实力之外,Ghatghar PSP 还展示了如何将复杂的工程、可持续能源和社会责任完美地结合起来。这项研究强调了抽水蓄能设施对于解决世界能源问题、促进电网稳定性和加强可再生能源互补的重要性。现代能源系统以它为蓝本,实现了可持续性、经济性和社区效应的结合。
rte 12北至RTE 2A向西到I-395 n到13A出口(81E),将RTE 2E到北169(Harland Rd。)就在Ox Hill Rd。的,在Mahan Drive进入Norwich技术高中之前就右转。或RTE 349 North(CB Sharp Hwy)至I-95 N至RTE 117向北到RTE 2 WEST至RTE向西到RTE 169 North(Harland Rd。)在Ox Hill Rd上。在Mahan Drive进入Norwich技术高中或RTE 184 E到RTE 201北到RTE 2 W到RTE 169 N(Harland Rd。)就在Ox Hill Rd。的,在Mahan Drive进入Norwich技术高中之前就右转。
在电信基础架构的域中,无线电站(RBSS)内气候控制单元(CCU)的操作对于支持RBS的运行和防止硬件零件的磨损至关重要。但是,CCUS中能量效率的提高仍然引起了研究的关注。本主论文分析了优化RBS中CCU实施的操作和功率节省的方法。主要的目标集中在功率效率和硬件寿命上,为这项研究奠定了基础,从而导致基于机器学习(ML)算法的发展。这些算法用于创建动态预测模型,这些模型负责为托管CCU的特定RB设置最佳温度和风扇速度控制。通过数据驱动的方法涉及数据预处理,探索性分析和模型培训来加强这种ML方法。还通过使用加强学习(RL)方法评估操作方法并评估其对预测模型的贡献,从而加强了工作。结果证明,与传统方法相比,在使用基于RL的方法进行气候控制的同时,粉丝的操作节省了多达70%的能源。开发的算法不仅允许降低能源成本和环境影响,还可以提高电信基础设施的运营可靠性。随着许多RBS在世界范围内部署,这项研究的结果旨在为可持续和绿色的技术做出贡献,并为人工智能(AI)实现现实生活的机会开放。
我们要感谢各领域专家在我们进行的咨询中提出的意见、建议和宝贵建议,这些咨询是 TERI 正在进行的能源转型工作的一部分,特别是抽水蓄能电站。我们承认并感谢 TERI 杰出研究员 K Ramanathan 先生提供的指导和支持。所有相关人员的意见对报告和建议的形成都起到了重要作用。我们感谢 TERI 的编辑和设计团队的贡献。