或者,将电池存储与传统的 PHS 系统相结合将为系统运行带来有价值的服务,从而增强工厂的频率调节。电池存储可以提供即时响应时间,而 PHS 可以提供比其他存储系统多得多的能量。德国巴伐利亚州的 Kraftwerksgruppe Pfreimd 发电厂就实施了此类系统,当时安装了 12.5 MW 锂电池存储系统来补充现场现有的 PHS 设施(总容量为 137 MW)(Energy Storage,2018 年)。该系统通过为电网提供一次和二次控制电源和备用容量,有助于确保能源供应安全。
回应与我们的利益相关者的交往,这旨在解决提出的问题,并保证SSE致力于以负责任的方式实现灵活,可靠和清洁的能力系统,从而为社区和更广泛的社会增加价值。电源系统中碳捕获和存储(CCS)的作用是什么?作为一个致力于净零未来的组织,SSE计划在未来十年内投资超过400亿英镑,重点关注提供清洁电力系统所需的项目;可再生能源,网络和灵活性。为了确保可再生能源的系统能够真正为英国提供真正的交付,现实是系统还需要灵活性以在风不吹时提供电源,否则太阳不会闪耀。目前通过常规发电的那一刻,例如现有的彼得黑德电站。SSE想要交付的是灵活的一代,它本身就是低碳,可确保在大幅减少排放量的同时保持灯光。ccs,连接到电站,是实现此目标的一种方法。因此,从天然气转向低碳氢作为燃料。这些不会是备份可再生能源LED系统的唯一灵活性来源 - 它将包括越来越多的电力存储,例如电池和抽水的水力。SSE正在所有这些领域进行投资。CCS如何与净零和清洁电源系统保持一致?气候变化委员会表示,CCS是零净净净的必要条件,而不是一种选择,并且可能需要使用CCS燃气站。看到,到2035年,CC和氢的组合需要12-20GW的可调度低碳容量。英国政府于2024年12月在国家能源系统运营商提供的建议下于2024年12月发布了其清洁能源2030行动计划。此概述了CCS等清晰的角色技术将在可再生能源领导的系统中提供灵活的低碳备份时发挥作用。它设置了2030年需要的2-7GW低碳调度功率的范围,其中包括电力CC。SSE同意,CCS将具有有限但重要的作用。在使用天然气的地方 - 以及像气候变化委员会这样的组织的认可,它将继续发挥作用 - 必须针对低碳用途。由于英国电力系统已脱碳,带有CCS的电站将能够捕获并安全地存储与汽油发电相关的排放量的90%,从而大大降低了电源部门的CO 2。SSE的主要重点是减少其二氧化碳排放量,以在最新的范围1和2040年范围2到范围2。但是,如果无法完全消除排放,SSE认为可能需要负排放技术来中和剩余的剩余排放,包括与CCS发电站预期的残留排放。SSE已开始研究基于技术和自然的替代排放技术,并正在与政府和政策制定者接触,作为支持对这些投资的投资的框架。
抽水蓄能系统有两个蓄水池,其中一个蓄水池高于另一个蓄水池。传统上,当电力需求旺盛时,就会使用抽水蓄能系统。然而,随着我们转向间歇性可再生能源发电(如陆上和海上风电)比例更高的电力系统,抽水蓄能系统将在风力发电量超过需求时“储存”风力发电量,并在风力发电量无法满足需求时使用这些电力满足需求方面发挥重要作用。
随着风能和太阳能等可变可再生能源的整合,能源行业正在经历重大转型。这些能源随时间、日、季和年而变化;因此,需要短期和长期储能技术来保证电力的平稳和安全供应。本文批判性地回顾了现有的抽水蓄能电站类型,强调了每种配置的优缺点。我们提出了一些创新的抽水蓄能安排,这增加了找到合适地点建造大型水库以长期储存能源和水的可能性。在赞比西河上游流域的案例研究中,对一些建议的安排进行了比较,该地区由于地势平坦、气候干旱,储水能力受到很大限制。结果表明,建议的短期和长期循环组合抽水蓄能安排可能是可行的储能解决方案,并将储水成本降至接近零。
提高区域供水安全或实现流域间水平衡。用于跨流域调水的PHS厂通常具有较长的隧洞或使用上游水库作为运河,以促进流域水位转换,例如澳大利亚的雪山计划[38]和美国的大古力水坝[39,40]。
本文探讨了利用大型海上垂直轴风力涡轮机开发和实施风光互补发电厂的潜力。所提出的解决方案旨在通过将光伏模块直接集成到风力涡轮机结构中来提高能源产量和可靠性。本文考虑了各个风力涡轮机上部环形表面上的光伏模块示意图。本文描述了混合动力发电厂的运行情况。给出了估算发电厂功率特性的方程。案例研究分析了直径为 200 米的混合动力海上发电厂在三个气候差异显著的地点的潜在能源产量。计算结果表明,根据日照条件,混合动力发电厂风力部分的潜在年能源产量可达 1.5e4 MWh,安装在风力涡轮机顶环上的光伏部分的潜在能源产量可达 1528 MWh。本文强调了地理特征分析对于混合系统设计优化的重要性。即使在多云气候的北部地区,该电厂光伏部分的年发电量相对份额也不会低于 4%。结果表明,混合电厂的光伏组件可提供足够的能量来供应叶片旋转驱动器和其他辅助消费者,从而降低昂贵的储能设备的容量要求。
•免责声明:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,其任何机构,或其任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或实用性承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用将不会侵犯私人拥有权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
可再生能源与经典发电系统的结合是可持续能源产生的未来。通过数值模拟研究了将太阳能整合到布雷顿周期发电厂中的可行性和性能。布雷顿循环的代表代表了这种整合的好机会,布雷顿周期的特征是高效和适当使用多种热源。目前的工作着重于根据布雷顿周期的方案将太阳能纳入发电厂的可能性和效率,以提高效率并根据数值建模降低成本。最新的技术涉及在布雷顿周期中使用CH 4气体的可行性,该周期中有燃气轮机燃烧室和气吹风机。主要观察结果包括涡轮机的效率提高了32%,事实是,多年来,使用太阳能电池板,多年来,一般费用也从没有太阳能电池板的情况下也从没有太阳能电池板的每公里 /小时售价5.2美元降低到每兆瓦的4.3美元。关于排气温度,结果指出,由于使用太阳能电池板,温度上升了29%。提出的结果证明了可再生太阳能和常规发电系统的综合使用的潜力和好处,以促进更有效的能源的形成。
摘要 —城市综合管廊近年来发展迅速,有效的通风系统是维持综合管廊空气质量的关键。为提高综合管廊通风性能,根据设计图纸建立了综合管廊三维模型,基于Fluent 14.0软件建立流动模型,并采用数值模拟方法对风管及通风方式进行优化研究。综合管廊采用顶部通风和夹层通风,对比了城市综合管廊不同通风区域的通风方式。结果表明,运行增益和通风区长度的组合主要影响通风效果。基于模拟结果,提出了由顶部通风、400 m长入口自然通风和机械出口排风组成的综合通风模式。城市综合管廊可在低速下开启电动阀、防火门、排风机和诱导风机。该组合方式被认为是城市综合管廊最大通风速度的最优组合方式。关键词 —综合管廊,通风,数值模拟,优化