近年来,可再生能源 (RES) 在电力系统中的渗透率大幅提高。此外,化石燃料汽车逐渐被电动汽车取代。随着供应侧 RES 渗透率的提高和需求侧插电式电动汽车 (PEV) 渗透率的提高,电力系统的间歇性也随之增加。本文提出了一种虚拟存储工厂 (VSP) 的新型结构,以将 PEV 的存储潜力集成到电力系统中。建议的 VSP 由智能充电站、停车场聚合器 (PLA)、本地服务提供商 (LSP) 和全球服务提供商 (GSP) 组成。PLA 根据供应侧的灵活性要求协调 PEV 的充电/放电策略。LSP 旨在缓解电网薄弱线路的拥堵。当电力系统出现电力短缺/过剩时,GSP 为批发电力市场提供上调/下调。在供应方面,电力市场由三个交易大厅组成,包括日前市场、日内市场和平衡市场。 VSP 以长期、中期和短期提前通知的方式将 PEV 的存储潜力分层次整合到三个市场层面。电价数据取自丹麦电力市场。在 IEEE 14 总线系统上检验了所建议的方法。结果表明,所建议的 VSP 在关键时段为电力系统提供了本地和全球能源安全。
我们评估了 411 个公用事业规模(即 > 5 MW 交流和地面安装)光伏 (PV) 项目群的性能,这些项目总容量为 21.1 GW 直流(16.3 GW 交流),于 2007 年至 2016 年在美国投入商业运营。这批项目占 2017 年美国太阳能发电总量的 50% 以上。利用有关各个项目特征的详细信息,结合模拟辐照度数据,我们评估了第一年的实际性能符合模拟和声明预期的程度。然后,我们采用“固定效应”回归模型来统计分离年龄对系统性能的影响,以分析后续几年系统级性能下降的情况。我们发现,这批公用事业规模的光伏项目第一年的性能一般都达到了事前预期,但随后的系统级性能下降——发现为 1.3%/年(±0.2%)——平均比事前预期(通常为 0.5%/年)和过去的研究结果(从 0.8%/年到 1.0%/年)都要差。我们强调,1.3%/年是一个系统级估计值,它不仅仅涵盖了模块性能下降(例如,还包括污染、电站性能下降的平衡以及维护和/或其他事件的停机时间)。对各种项目特征的侧面分析表明,在较新的项目和较大的项目中,以及在长期平均温度较低的场地,系统级性能下降率往往较低。
现有的法国 PSH 资产已满足了对电网灵活性的需求,而且还需要更多。在 2006 年 11 月的欧洲停电期间,水力发电在恢复和稳定负荷平衡方面发挥了关键作用。在法国,包括 PSH 在内的水电站在 40 分钟内将发电量提高到了 4 吉瓦。在欧洲其他地区,总共有 1.6 吉瓦的 PSH 处于泵送模式,停止了泵送,以快速应对紧急情况并帮助恢复发电和负荷平衡。2 最近,在 2021 年 1 月的欧洲大陆同步区事件中,同步区一分为二,以避免因电压快速崩溃和两个区域频率逐渐差异而导致停电。欧洲各地的水电站,包括抽水蓄能电站,都进行了同步以恢复频率,在法国,RTE“增加了一些加氢发电,使其平衡在一小时内增加了 3,500 兆瓦”,从而稳定了电网的频率 3 。随着我们走向风能和太阳能发电量不断增加的电网,对这种系统灵活性和响应能力的需求只会增加。
混合发电厂 (HPP) 有可能通过共享开发(例如许可)和基础设施(例如收集系统)来提高可再生能源系统的价值并降低其成本。先前的研究已经确定了太阳能加储能发电厂的潜在成本节约以及技术和经济性能改进;然而,需要进一步研究来了解特定于风力发电厂的成本驱动因素。在这里,我们分析了一种混合发电厂共享基础设施成本节约的潜力:风能加太阳能光伏 (PV)。其中的基线比较考虑了共置 HPP 与“虚拟”HPP。在这次比较中,我们只考虑成本,而不考虑运营能力;因此,虚拟 HPP 在成本方面可以被认为在功能上等同于单一发电(风能加太阳能光伏)技术的组合,因此这些发现适用于混合发电厂与非混合发电厂的比较。我们进一步研究了风能和太阳能光伏系统平衡 (BOS) 组件本身的成本扩展,以及在 HPP 场景中的成本扩展。为了进行此分析,我们开发了一个新的开源 Python 成本建模工具:混合系统平衡 (BOS) 系统工程模型 (HybridBOSSE)。我们的基准成本假设显示,对于共置的 200 兆瓦风能加太阳能光伏混合电厂(100 兆瓦风能加 100 兆瓦太阳能光伏),与“虚拟”(非共置)200 兆瓦风能加太阳能光伏电厂相比,BOS 成本可能节省 11.8%(反映风能 + 太阳能电厂总成本的约 4%)。在某些电厂规模(50 兆瓦)下,BOS 的节省可以达到 16%。我们还表明,共享物理组件的最大成本降低来自变电站和电网连接,而成本节约的潜力在很大程度上取决于项目规模(影响项目总成本和百分比成本节约)。我们根据早期的行业反馈,对软成本(如管理、开发、许可)的降低做出了一些假设,并模拟了这些假设对 HPP 的成本节约机会的影响。我们希望这将为围绕 HPP 可能的成本节约进行更广泛的行业讨论提供一个起点,我们鼓励随着行业的成熟,进一步反馈以完善和更新这些假设。这项工作表明,从节约成本的角度来看,HPP 提供了额外的价值,并为开发人员和学术界提供了工具,用于分析他们自己对 HPP 成本的假设对成本的影响。本文介绍的方法和结果展示了一种新功能,可以确定哪些 HPP 方案可以提供最大的成本降低机会,并为更广泛的开发人员和研究人员社区提供开源建模功能。
1 新疆大学可再生能源发电与并网教育部工程研究中心,乌鲁木齐 830049,新疆,中华人民共和国。2 新疆电力有限公司电力科学研究院,乌鲁木齐 830049,新疆,中华人民共和国。通讯作者:吴嘉辉 (wjh229@xju.edu.cn)。摘要:随着储能电站领域的蓬勃发展,电池系统状态和故障的预测受到广泛关注。电压作为各类电池故障的主要指示参数,准确预测电压异常对确保电池系统的安全运行至关重要。本研究采用基于 Informer 的预测方法,利用贝叶斯优化算法对神经网络模型的超参数进行微调,从而提高储能电池电压异常预测的准确性。该方法以1分钟为采样间隔,采用一步预测,训练集占总数据的70%,将预测结果的均方根误差、均方误差和平均绝对误差分别降低至9.18mV、0.0831mV和6.708mV。还分析了实际电网运行数据在不同采样间隔和数据训练集比例下对预测结果的影响,从而得到一个兼顾效率和准确性的数据集。所提出的基于贝叶斯优化的方法可以实现更准确的电压异常预测。
在可再生能源大规模接入电网导致系统运行灵活性不足、调峰压力增大的背景下,本文提出了一种涉及抽水蓄能电站的调峰辅助服务市场模型。首先,以调峰成本最小为优化目标,量化参与调峰机组的调峰价值,建立调峰辅助服务市场数学模型。然后,考虑抽水蓄能电站兼具源荷特性,深度挖掘抽水蓄能电站的调峰价值分担火电机组调峰压力,建立峰值辅助服务费补偿机制。最后,提出11机14节点的系统拓扑结构对本文提出的调峰辅助服务市场模型进行仿真,并验证了所提方法的有效性。
2020年11月30日,Dominion Energy Nou Connecticut,Inc。(DENC)提交了书面信托基金支出通知(序列号20-410,ML20336A 104)旨在涵盖2021年至2025年期间的MPS1的预期,非管理费用。在这份提交的提交中,Denc讨论了修改后的SAFSTOR的预计年费用,燃油管理和其他活动“ 2021年约590万美元,2022年为530万美元,2023年的630万美元,2024年的530万美元,以及2025年的530万美元(2025年(2020美元))。2021年的较高成本被解释为“主要归因于涡轮机式吊杆维护项目。2023年的较高成本主要归因于the依和去除345kV传输线。”
国家还需要提供此基础设施,以替换四个计划在未来15年内关闭的燃煤电站,从2023年开始。这些电站目前提供该州能源供应的四分之三;如果他们没有在关闭之前被替换,那么价格可能会上涨。鉴于现有的发电和传输需要30年的计划和建造,投资在其规模和相对较短的时间上都是前所未有的。现在需要在不到15年的时间内更换退休的电站。更换这些电站所需的基础设施也有很长的交货时间 - 例如,泵送水力以保持系统可靠可能需要8年的时间来计划,设计和构建。这就是为什么现在开始开发基础架构很重要的原因。