在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
中国已经降低了温室气体排放增长速度,部分原因是由于对陆上风电的大量投资。相比之下,对海上风电的投资一直很小,直到最近才开始受到成本观念的限制。本文使用同化气象数据来评估中国未来的海上风电潜力。对省级的分析表明,总潜在风电资源是目前沿海地区电力需求的 5.4 倍。最近欧洲和美国市场的经验表明,中国可以利用潜在的海上资源,在高成本情况下以具有成本竞争力的方式提供 1148.3 TWh 的能源,在低成本情况下提供 6383.4 TWh 的能源,相当于 2020 年后沿海地区能源总需求的 36% 至 200%。分析强调了海上风电将给中国带来显著的益处,有望大幅减少温室气体排放,同时改善空气质量。
航天器开发预算的很大一部分用于集成和测试。考虑到开发太空计划所投入的资源、恶劣的太空环境以及发射后不可能返工,发射前与任务保障相关的费用(例如地面测试)是合理的。为此,政府和行业制定了严格的地面测试标准,以确保满足测试有效性和任务保障目标。从历史上看,这些规范是为高优先级和高成本航天器的国家安全太空计划编写的,期望任务保障要求将针对优先级较低的航天器进行量身定制。随着以降低成本和提高风险承受能力为目标的太空计划的激增,需要更全面的文件来说明如何定制地面测试要求以确保与降低的任务保障期望保持一致。
∗ 基金项目 : 科技创新 2030“ 脑科学与类脑研究 ” 重大项目 (2022ZD0208601), 国家自然科学基金 (62076250,62204204), 陕西
摘要 电触觉刺激已广泛用于人机界面,为用户提供反馈,从而闭合控制回路并提高性能。编码方法是电触觉界面的重要组成部分,它定义了反馈信息到刺激曲线的映射。理想情况下,编码将提供反馈变量的高保真表示,同时易于被受试者感知和解释。在本研究中,我们进行了一个闭环实验,其中离散和连续编码方案相结合,以利用这两种技术的优势。受试者执行肌肉激活匹配任务,仅依靠代表产生的肌电信号 (EMG) 的电触觉反馈。具体而言,我们研究了两种不同编码方案(空间和空间与频率相结合)在两种反馈分辨率(低:3 和高:5 个间隔)下的性能。在这两种方案中,刺激电极都围绕上臂放置。标准化 EMG 的幅度被分为间隔,每个电极与一个间隔相关联。当生成的 EMG 进入其中一个间隔时,相关电极开始刺激。在组合编码中,活动电极的额外频率调制还指示间隔内信号的瞬时幅度。结果表明,当分辨率较低时,组合编码会降低下冲率、变异性和绝对偏差,但当分辨率较高时则不会,反而会使性能变差。这表明组合编码可以提高 EMG 反馈的有效性,但这种效果受到肌电控制固有变异性的限制。因此,我们的研究结果提供了重要的见解,并阐明了在使用电触觉刺激传递具有高变异性的反馈信号(EMG 生物反馈)时信息编码方法的局限性。