纳米技术是研究结构尺寸在1~100纳米范围内的材料性能与应用的科学技术。1981年扫描隧道显微镜发明后,长度为1~100纳米的分子世界诞生了,其最终目的是用原子或分子直接构筑具有特定功能的产品,因此纳米技术是一种利用单个原子或分子制造材料的技术。纳米技术是一门交叉学科和综合学科,研究内容涉及现代科学技术的广阔领域。纳米科学与技术主要包括七个相对独立又相互渗透的学科(纳米系统物理、纳米化学、纳米材料、纳米生物学、纳米电子学、纳米加工和纳米力学)和三个研究领域(纳米材料、纳米器件和纳米尺度检测与表征)。纳米材料的制备与研究是整个纳米技术的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,纳米电子学是纳米技术的最重要内容。
静电纺丝是一种非常通用且具有成本效益的技术,以其在具有膨胀表面积的生产多孔纤维中的简单性和灵活性而闻名。该技术的灵活性可以创建具有不同结构和脚手架的纳米纤维。这些纳米纤维有时在应用之前受到热处理。它们的独特特征使它们非常适合集成到储能系统中。在电池等能源储能系统的领域中,存在锂离子电池以外的替代品的压力需求。多价电池,例如Al-Ion,MG-ION,Zn-ION和CA-ION电池,由于其有利的特性,它代表了一个合适的选择。由于其多孔性质,电纺纤维促进离子转移,增强电荷/放电过程并改善电池动力学。在本文中,我们将研究如何在多价电池阴极中使用电纺纤维,并揭示它们为这些电池系统提供的额外优势。最后,将进行全面的评估,以评估该技术的优势和挑战。高容量电池的前景,特别是钙离子蝙蝠Teries。
摘要:聚合物纳米纤维已成为具有生物医学应用的制作结构的迷人介质。旋转方法在医疗应用和神经组织工程的背景下引起了很大的关注,最终导致了聚合物纤维的产生。与聚合物微纤维相比,具有纳米尺度直径的聚合物纳米纤维可提供明显更大的表面积,从而促进了增强的表面功能化。因此,聚合物纳米纤维垫目前正在对无数应用程序进行严格评估,包括过滤器,组织工程的脚手架,防护设备,复合材料中的加固和传感器。本评论对聚合物纳米纤维处理和表征的最新进步提供了详尽的概述。此外,它还参与了有关研究挑战的论述,聚合物纳米纤维生产的即将发生的发展以及多种多样类型及其应用。静电纺丝已用于将广泛的聚合物转换为纳米颗粒纳米纤维,这可能是唯一具有工业生产潜力巨大潜力的方法。这些旋转技术的基础是探索了生物医学用途以及用于药物输送,疾病建模,再生医学,组织工程和生物传感的纳米结构纤维的基础知识。
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国
简介:无菌性非触摸技术(ANTT)是一种基本的医学和护理技能,描述了在侵入性临床程序中所需的预防和控制方法和控制方法和预防措施,以降低从医疗保健提供者,设备或环境向患者传播微生物的风险。至关重要的是,医疗保健提供者对他们对患者构成的危险有透彻的了解,并且可以在实践中证明这一知识。本审查协议旨在对ANTT的当前医疗保健提供者知识,态度和实践进行深入分析。方法:将根据系统评价和荟萃分析的首选报告项目(PRISMA)-2009进行研究,并使用样本,感兴趣的现象,设计,评估和研究类型(蜘蛛)和人群,干预,比较,比较和结果(PICO)工具来构建研究问题。将搜索以下数据库,以识别合格的已发表论文(Cinahl,PubMed/Medline,Scopus,Scopus,Web of Science,Embase,Cochrane库)和未发表的论文和“灰色”文献(Proquest Disserwistions&Theses&Theses&Theses,Open Sigle Sigle和Gray文学报告)。讨论:审查方案将成为医疗保健专业人员,政策制定者,教育工作者和研究人员,致力于提高患者安全并减少HAIS的宝贵资源。关键字:无菌非接触技术;临床实践框架;医疗保健相关感染;医疗保健提供者;系统评价
Bhavini Patel 是牛津大学化学专业硕士研究生最后一年的学生。她对功能化材料为可持续未来铺平道路的潜力非常感兴趣。Bhavini 专注于化学和环保意识的交汇,她很高兴能为绿色世界的旅程带来重大影响。
摘要:在单喷丝头静电纺丝均匀混合溶液的过程中,通过 PEO 和 BW 的自组织,制备了由聚环氧乙烷 (PEO)、蜂蜡 (BW) 和 5-硝基-8-羟基喹啉 (NQ) 制成的芯鞘纤维组成的纤维材料。此外,采用同样的方法,还可以制备由 PEO、聚(L-丙交酯) (PLA) 和 NQ 或 5-氯-7-碘-8-羟基喹啉 (CQ) 以及 PEO、聚(ε-己内酯) (PCL) 和 NQ 制成的芯双鞘纤维组成的纤维材料。分别用己烷和四氢呋喃对 BW 和聚酯进行连续选择性萃取,结果表明 PEO/聚酯/BW/药物的芯双鞘纤维由 PEO 芯、聚酯内鞘和 BW 外鞘组成。为了评估 PEO/BW/NQ、PEO/PLA/BW/NQ、PEO/PCL/BW/NQ 和 PEO/PLA/BW/CQ 纤维材料用于植物保护的可能性,使用植物病原微生物(皱褶假单胞菌、禾谷镰刀菌和燕麦镰刀菌)和有益微生物(绿针假单胞菌、解淀粉芽孢杆菌和棘孢木霉)进行了微生物学研究。发现纤维材料对植物病原微生物和有益微生物均具有抗菌和抗真菌活性。这是首次报道装载 8-羟基喹啉衍生物的纤维材料不仅对植物病原微生物具有活性,而且对农业中重要的有益微生物也具有活性。
人体组织(例如肌肉、血管、肌腱/韧带和神经)具有纤维状束状形态,束内细胞和细胞外基质 (ECM) 以特定的 3D 方式有序排列,协调细胞和 ECM 发挥组织功能。通过利用新兴的“自下而上”生物制造技术将细胞纤维(含有活细胞的纤维)设计为活体构件,现在可以在体外重建/再造纤维状束状形态及其时空特定的细胞-细胞/细胞-ECM 相互作用,从而实现这些纤维组织的建模、治疗或修复。本文简要回顾了可用于制造细胞纤维的“自下而上”生物制造技术和材料,重点介绍了能够有效、高效地生产细细胞纤维的静电纺丝技术,以及通过适当设计的工艺,模拟天然纤维组织的 3D 细胞载运结构。强调了细胞纤维作为药物测试、细胞治疗和组织工程等领域的模型、治疗平台或组织类似物/替代品的重要性和应用。讨论了在高级层次结构和天然组织复杂动态细胞微环境的仿生学方面面临的挑战,以及细胞纤维在众多生物医学应用中的机会。
摘要:全球癌症患者数量正在迅速增加。在人类死亡的主要原因中,癌症可视为对人类的主要威胁之一。尽管目前许多新的癌症治疗方法(如化疗、放疗和手术方法)正在开发并用于测试目的,但结果显示其效率有限且毒性高,即使它们有可能在此过程中损害癌细胞。相反,磁热疗是一种源自磁性纳米材料的使用领域,由于其磁性和其他特性,磁性纳米材料在许多临床试验中被用作癌症治疗的解决方案之一。磁性纳米材料可以通过施加交变磁场来提高位于肿瘤组织中的纳米颗粒的温度。一种非常简单、廉价且环保的方法是通过在静电纺丝过程中向纺丝溶液中添加磁性添加剂来制造各种类型的功能纳米结构,这可以克服这种具有挑战性的治疗过程的局限性。在这里,我们回顾了最近开发的电纺磁性纳米纤维垫和磁性纳米材料,它们支持磁热疗、靶向药物输送、诊断和治疗工具以及癌症治疗技术。