随着技术开发的发展,聚合物在开发能量收集和机电设备方面正在备受考虑。聚乙烯氟化物(通常称为氟聚合物家族的半晶体聚合物PVDF)在研究界中引起了极大的兴趣。这种聚合物对具有出色的压电和介电性能的研究人员感到惊讶。除此之外,诸如出色的热稳定性,柔性处理,防腐蚀和机械强度等特性使它们更适合于诸如可穿戴传感器,纳米生成器,旋转阀超滤膜和锂离子电池中的分离器等应用。此外,在通过其电气性能深入探索时,PVDF是铁电绝缘矩阵,主要在绝缘材料中采用。,但很少有研究人员导致将某些填充物纳入PVDF可以改善其电活性晶体,而无需外部脉动过程。这种增强功能增强了他们的压电性能,使其成为多功能应用的高级聚合物,例如电磁干扰(EMI),声传感器,能量存储和智能支架的屏蔽材料。因此,本综述将PVDF作为多功能应用的高级聚合物。
环氧树脂是一种反应性预聚物,其特征在于存在由两个碳原子和一个氧原子组成的环状结构的环氧基团,通过自均聚或与胺、酸酐、酸、醇或酯等共反应物发生交联反应形成大分子网络[1-3]。环氧树脂已被公认为最广泛使用的具有战略意义的热固性材料,由于其固有的机械和化学稳定性、耐热和耐腐蚀性、电绝缘性和强粘结性,通常应用于防腐涂料、粘合剂、半导体封装材料、电绝缘材料和高性能复合材料[4,5]。环氧树脂市场由印度、韩国、中国和日本等亚洲国家主导,其份额高达41.8%。这受到与北美和欧洲相比环境法规相对较少和国家鼓励制造业政策的影响,并且由于产品的性质,在亚洲大陆的发展中国家和新兴国家中得到广泛使用,该产品在道路和建筑物等建筑领域需求量很大。2019 年至 2024 年期间的年均增长率也是亚洲最高,为 6.9%,其次是中东和非洲、南美、北美和欧洲。2022 年,
我们研究了矩形管道中压力驱动层流磁流体动力学流动的能量稳定性,该管道具有横向均匀磁场和电绝缘壁。对于足够强的场,层流速度分布具有均匀的核心和凸起的哈特曼和谢尔克利夫边界层,这些边界层位于垂直和平行于磁场的壁上。该问题通过横向流坐标中的切比雪夫多项式的双重展开进行离散化。临界雷诺数的线性特征值问题取决于流向波数、哈特曼数和纵横比。我们考虑了小纵横比和大纵横比的极限,以便与基于一维基流的稳定性模型进行比较。对于大纵横比,我们发现数值结果与基于准二维近似的结果具有良好的一致性。升力机制在零流向波数极限中占主导地位,并使管道中的临界雷诺数和哈特曼数呈线性依赖关系。小纵横比的管道结果收敛到 Orr 的原始能量稳定性结果,即对平面泊肃叶基流施加展向均匀扰动。我们还研究了特征模态的不同可能对称性以及管道几何中的纯流体动力学情况。
k -1。六角硼硝化硼(H-BN)木制的含量是有望用于下一代电子热管理的热导电材料。这些电绝缘但热导导的H-BN平流可以作为热填料掺入,以将高𝜿赋予聚合物基于聚合物的复合材料。嵌入了几层H-BN(FLH-BN)植物的基于纤维素的复合材料,实现了使用成本效率和可伸缩程序制备的A liby21.7 W m-1 K-1。该值比在嵌入了大量H-BN的复合材料中观察到的值高5倍(BH-BN,𝜿≈4.5w m-1 k-1),表明在H-BN聚合物组合的H 𝜿 𝜿上,FLH-BN的上i上i上的益处。当用作热界面材料(TIM)的糊剂时,与在同一H-BN负载下的BH-BN综合材料相比,在功率密度(H)下,以2.48 W CM-2的功率密度(H)将最高温度(T MAX)降低24.5°C。结果提供了一种有效的方法,可以改善TIMS的基于纤维素的热糊剂的𝜿,并证明了它们在集成电路(ICS)和高功率电子设备中的热量耗散的生存能力。
第一种合成塑料是在1907年发现的,当时比利时出生的化学家利奥·H·贝克兰(Leo H. Baekeland)在压力下使用己胺甲基元中胺作为反应的催化剂,在压力下反应苯酚和甲醛。结果是他称为Bakelite的热固性“酚类”塑料。与当时可用的其他塑料相比,例如赛璐oid,Baekeland的热固性酚类更稳定。一旦模制,这种新材料在重新加热或溶解后不会燃烧或软化。这种好处使其在市场上的其他塑料中脱颖而出。Bakelite是立即的商业成功。它具有耐电性,化学稳定,耐热,刚性,湿气和耐候性。它非常广泛地用于其电绝缘能力。Baekeland将其发明的权利卖给了伊士曼柯达公司,该公司首先将其用于摄像头。J.W.也很有趣Hyatt是赛璐oid的发明者,也是凯悦酒店台球舞会公司的创始人,亲自命令他的公司停止使用赛璐oid并替代Bakelite,因为其出色的表现,他的台球球。
摘要:聚碳酸酯中的创新永远不会停止。高性能材料,例如阻燃Bayblend®FR(PC+ABS FR)和Makrolon®(纯聚碳酸酯)等级,已经证明了EE行业中Li-ion电池包装的解决方案数十年。现在,它们已成功地转移到移动性锂离子电池模块,电池支架和顶盖,以及其他应用。通过使用Covestro基于生物来源的废物和残留原料1的更可持续性的RE等级,可以进一步降低这些聚碳酸酯的碳足迹。此外,Covestro开发了两个新的优质材料投资组合。Makrolon®TC投资组合提供了导热率和导电或电绝缘等级,以支持电池模块中的温度均匀分布,从而改善了锂离子电池寿命。此外,Covestro推出了两个新的各向同性和阻燃聚碳酸酯,具有比较跟踪索引2 CTI为600 V的600 V,用于锂离子电池,电力电子设备和EE应用程序,可提供新的选项,以克服已知的塑料塑料的塑料和碎片率问题,并在等级和OEMS处于层次和OEMS。关键字:聚碳酸酯,创新,电池,碳足迹,导热率,CTI。
vsharma@grummanbutkus.com _________________________________________________________________________________________ 摘要 在寻求可再生能源解决方案的过程中,太阳能光伏系统已成为清洁电力生产的关键参与者。然而,高工作温度对其效率和寿命构成了重大挑战,特别是在聚光光伏 (CPV) 系统中。本文回顾并评估了各种冷却策略,从自然空气冷却到相变材料、液体浸没和喷射冲击等先进技术,以保持太阳能电池的最佳工作温度。我们的研究评估了这些冷却方法对 PV 系统性能、成本和环境影响的影响。我们发现微通道冷却显著提高了热性能,从而显著提高了 CPV 效率。通过统计分析、模拟数据和成本、可扩展性等务实考虑,我们验证了微通道散热器是提高 CPV 电池寿命和性能的强大解决方案。我们的研究结果主张将微通道技术集成到 CPV 系统中,这标志着向更可行和更强大的太阳能来源迈出了重大一步。关键词:太阳能光伏、光伏冷却、热管理、聚光光伏系统、微通道散热器、冷却技术、相变材料、液浸冷却、射流冲击、效率、可再生能源、热导率、电绝缘、纳米流体、环境可持续性、散热 ________________________________________________________________________________________________
摘要:在这项研究中,使用氧化铝(Al 2 O 3)和石墨烯纳米平板(GNP)的基于电绝缘的聚体弹性弹性(POE)基于相位变化(PCMS)是使用传统的压力式造型的,该技术对液压式造成的良好的抗性量和应应应付的固定型,制备了良好的固定量,以供应的固定型固定型,并将其出现。优质的光热转化效率。观察到Al 2 O 3和GNP之间的协同相互作用,这有助于在POE/Poe/paraffine Wax(POE/PW)矩阵中建立热导电途径。POE/PW/GNPS 5 wt%/Al 2 O 3 40 wt%复合材料的平面内导热率高达1.82 w m-1 k-1,标志着与其未完成的POE/PW/PW相比,相比之下,显着增加了约269.5%。复合材料具有出色的热量散热能力,这对于电子产品中的热管理应用至关重要。此外,POE/PW/GNPS/Al 2 O 3复合材料表现出出色的电绝缘材料,增强的质量性能以及有效的太阳能转换和运输。在80 mW cm -2
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
1.0简介Aramid纤维(AFS)是一类高性能有机聚合物纤维,以其出色的机械性能,耐热性和化学稳定性而闻名。自1964年发明以来,AFS已成为从航空航天和防御到运动器材和电绝缘材料的广泛应用中必不可少的材料。[1-5]芳香虫的独特特性归因于其分子结构,该结构由酰胺基团相连的芳族环组成。在旋转过程中实现的高度分子取向也沿纤维轴赋予强度和刚度。商业AFS主要基于两种聚合物 - 聚(P-phenylene terephalamide)(PPTA)(PPTA),销售为Kevlar和Twaron,以及聚(M-phenylene isophthalamide)(MPIA)(MPIA),以商业上称为Nomex。近年来还看到了其他特种弧菌的出现,例如聚(P-苯基苯甲甲行唑)(PBO)和具有增强的热耐药性的杂环芳烃[6-9]。在过去的几十年中,已经采用了一系列干燥和湿的旋转技术来生产商业AF。旋转过程的选择取决于聚合物类型,所需的纤维特性和过程经济学。在本综述中提供了不同旋转方法以及芳香旋转技术的关键发展。最近的制造芳香