电气开关设备。它还可以包括变压器)靠近基尔肯尼市,连接到更广泛的 110kV 和 220kV 输电系统。基尔肯尼 110kV 变电站配备了将电压从 110kV 降至 38kV 的变压器。基尔肯尼 110kV 变电站为基尔肯尼市周围的几个 38kV 变电站以及几个较小的城镇(例如该县南部的 Ballyhale)供电。这些 38kV 变电站通过 38kV 架空线路和地下电缆连接到 110kV 变电站。Ballyhale 的 38kV 变电站包括将电力从 38kV 降低到 MV 的变压器。从 Ballyhale 38kV 变电站供电的许多 MV 电路将 Ballyhale 地区所有需求客户连接到电网。对于家庭和小型商业客户,将有中压或低压变压器位于他们的场所附近。
智能电网是一种现代电网技术,可以数字化整个电力系统。简而言之,智能电网是一种使用监控、连接、计算和控制来改善公用电网功能和可用性的系统。检测、共享、部署智能、施加控制和接收反馈数据都是平台变得更智能的方式。这允许在大规模能源生产、输电和配电以及买家的组合中优化许多功能,以实现最佳电力系统。它能够实现确保能源效率和可靠性的目标。孟加拉国可以从 SG 的潜在应用中获得巨大的繁荣。本论文的主要目标是研究智能电网在孟加拉国未来的重要性以及传统电网的替代,因为它可能是该国与电力系统相关的持续问题的有效模型。本论文研究并描述了智能电网的经济拓扑和特征以及孟加拉国电力短缺的潜在补救措施。除了连接性和智能电网监控机制的整合之外,它还涵盖了环保的电力传输和分配。
Transgrid 还指出,目前正在实施 ISF 成本回收方法,并希望讨论一些潜在的意外后果。尽管 TNSP 每年能够收回预测成本,但必须管理大量不稳定的现金流(估计每年数亿美元),这可能会对融资能力状况产生重大影响。1 这一问题是由实际系统强度支付可能因市场条件的变化而每月发生重大波动所致。与预测成本的每月固定回收(通过年度输电定价获得)相比,这种波动将导致每月回收金额大幅超过或低于预期。如果回收金额大幅低于预期,即系统强度支付在一个月或一个季度内大幅高于预测金额,这将对 Transgrid 的信用指标和债务契约要求产生重大影响。
自 1982 年以来,人口增长、房屋变大、电视变大、空调变多和电脑变多导致电力峰值需求每年增长近 25%,而电力传输量增长却超过电力传输量。然而,研发支出(创新和更新的第一步)却是所有行业中最低的。
执行摘要 恶劣天气是美国停电的主要原因。2003 年至 2012 年间,由于恶劣天气,估计发生了 679 起大面积停电事件。停电导致学校停课、企业停业、紧急服务受阻,给经济造成数十亿美元的损失,扰乱了数百万美国人的生活。美国电网的弹性是美国防御恶劣天气的关键部分,也是奥巴马总统政府关注的重点。2011 年 6 月,奥巴马总统发布了《21 世纪电网政策框架》,其中提出了电网现代化的四大支柱战略。该计划投入了数十亿美元用于 21 世纪智能电网技术的投资,重点是提高电网的效率、可靠性和弹性,使其不易受到天气相关停电的影响,并减少停电后恢复供电所需的时间。随着气候变化增加了恶劣天气的频率和强度,电网弹性变得越来越重要。温室气体排放正在提高世界各地的空气和水温。科学研究预测,更严重的飓风、冬季风暴、热浪、洪水和其他极端天气事件是人为温室气体排放引起的气候变化之一。本报告估计了 2003 年至 2012 年期间恶劣天气造成的停电的年度成本,并介绍了实现电网现代化和提高电网弹性的各种策略。在此期间,据估计,天气相关停电给美国经济造成的损失经通胀调整后,每年平均为 180 亿美元至 330 亿美元。年度成本波动很大,在发生重大风暴的年份最高,例如 2008 年的飓风艾克,当年的成本估计范围为 400 亿美元至 750 亿美元,以及 2012 年的超级风暴桑迪,当年的成本估计范围为 270 亿美元至 520 亿美元。国会研究服务处最近的一项研究估计,经通胀调整后,天气相关停电每年的成本为 250 亿美元至 700 亿美元(Campbell 2012)。估计值的变化反映了估计过程中使用的不同假设和数据。停电成本有多种形式,包括产出和工资损失、库存损坏、生产延误、不便和电网损坏。持续投资于电网现代化和恢复力将随着时间的推移减轻这些成本——为经济节省数十亿美元,并减少极端天气来袭时数百万美国人所经历的困难。