将孔隙度引入铁电陶瓷可以降低有效的介电常数,从而增强直接压电效应产生的开路电压和电能。然而,纵向压电系数的减小(D 33)随着孔隙率的增加,目前限制了可以使用的孔隙率范围。通过将排列的层状孔引入(Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3中,本文在D 33中表现出与其密集的对应物相比,D 33中的22–41%增强。这种独特的高D 33和低介电常数的独特组合导致了明显改善的电压系数(G 33),功能收获(FOM 33)和机电耦合系数(k 2 33)。证明改进特性的基本机制被证明是多孔层状结构内的低缺陷浓度和高内极化场之间的协同作用。这项工作为与传感器,能量收割机和执行器相关的应用的多孔铁电剂设计提供了见解。
摘要:具有明显的室温磁电耦合系数的薄膜实验实现,在没有外部DC磁场的情况下,αMe一直难以捉摸。在这里,在没有外部DC磁场的情况下,据报道多效性聚合物纳米复合材料(MPC)薄膜的大型耦合系数为750±30 mV-1 cm-1。MPC基于PMMA-REDRED的钴有铁纳米颗粒,该纳米粒子均匀分散在压电聚合物聚合物聚(乙烯基氟化物-Co-三氟乙烯,P(VDF-TRFE)。 表明,纳米颗粒聚集起着有害的作用,并显着降低了αMe。 通过原子传递自由基聚合(ATRP)接管一层聚(甲基丙烯酸甲酯)(PMMA)的表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。 均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。 关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合表明,纳米颗粒聚集起着有害的作用,并显着降低了αMe。通过原子传递自由基聚合(ATRP)接管一层聚(甲基丙烯酸甲酯)(PMMA)的表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。 均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。 关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合
完整作者列表: Pradhan, Dhiren;田纳西大学诺克斯维尔工程学院,材料科学与工程;橡树岭国家实验室纳米相材料科学中心, Kumari, Shalini;宾夕法尼亚州立大学帕克分校,材料科学与工程系 Puli, Venkata;圣卡洛斯联邦大学,化学 Pradhan, Dillip;NIT Rourkela,物理与天文系 Kumar, Ashok;国家物理实验室 (CSIR),顶级标准与工业计量 (ALSIM) Kalinin, Sergei;橡树岭国家实验室,凝聚态科学 K Vasudevan, Rama;橡树岭国家实验室,纳米相材料科学中心 Katiyar, Ram;波多黎各大学,Rio-piedras,物理学 Rack, Philip;田纳西大学;橡树岭国家实验室纳米相材料科学中心
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。