摘要 - 我们研究使用TIN/HF X ZR 1-X O 2/Interlayer/Si(MFIS)GATE堆栈的Si Fefet耐力疲劳期间,不同的层中和铁电材料对电荷捕获的影响。我们拥有具有不同层间(SIO 2或SION)和HF X ZR 1-X O 2材料(X = 0.75、0.6、0.5)的FeFET设备,并在耐力疲劳期间直接提取了电荷捕获。我们发现:1)层间中N元素的引入抑制了电荷捕获和缺陷的产生,并改善了耐力特征。2) As the spontaneous polarization ( P s ) of the Hf x Zr 1-x O 2 decreases from 25.9 μC/cm 2 (Hf 0.5 Zr 0.5 O 2 ) to 20.3 μC/cm 2 (Hf 0.6 Zr 0.4 O 2 ), the charge trapping behavior decreases, resulting in the slow degradation rate of memory window (MW) during program/erase cycling;另外,当P S进一步降低至8.1μc/cm 2(HF 0.75 ZR 0.25 O 2)时,初始MW几乎消失(仅〜0.02 V)。因此,P s的减少可以改善耐力特征。合同中,它也可以减少MW。我们的工作有助于设计MFIS Gate堆栈以提高耐力特征。
原子的精确排列和性质驱动凝结物质中的电子相变。为了探索这种微弱的联系,我们开发了一种在低温温度下工作的真正双轴机械变形装置,与X射线衍射和运输测量值兼容,非常适合分层样品。在这里我们表明,TBTE 3的轻微变形对其电荷密度波(CDW)具有显着影响,并具有从C到A / C参数驱动的方向转变,A = C附近的微小的同存区域,并且没有空间组的变化。CDW过渡温度t c在a = c 1 r的线性依赖性中,而间隙从共存区域中饱和。这种行为在紧密结合的模型中得到很好的解释。我们的结果质疑RTE 3系统中的间隙和T C之间的关系。此方法为研究中共存或竞争的电子订单的研究开辟了新的途径。
nist.gov › publication › get_pdf 基于 AI 的晶体管中电荷噪声的变化... 2瑞士联邦计量局,3003 Bern-Wabern,瑞士。
在密切相关的5 f-电子系统中,由于波函数的扩展,与可比强度的相互作用竞争。这场竞争导致了各种各样的外来状态,这几乎无法用D - 或4 F-电子物理学的常规模型来理解[1]。在基于金属U的重型费米化合物中,周围配体具有强大的杂交作用,异常阶段的异常共存发生为例如,例如,在隐藏的阶超导体URU 2 SI 2中。发现热量异常的“隐藏顺序”参数的性质仍在辩论之后,在发现后30年以上[2]。UPT 2 Si 2是U T 2 M 2(T =过渡金属; M = SI或GE)家族的紧密相关的金属间化合物,其PT-5 D电子与U-5 F状态杂交。UPT 2 Si 2采用CABE 2 GE 2晶体结构,并在t n = 35 k处磁性下命令,带有波矢量q m =(1 0 0 0),其中铁磁AB平面沿C轴堆叠了抗磁力(AFM),沿C轴堆叠,并具有≈2μb[3-5]。因此,长期以来,UPT 2 Si 2被认为是铀间金属化合物具有局部5 F电子的罕见例子,在简单的晶体领域水平方案中可以解释磁性[4]。然而,最近的一些研究[6-9]质疑该系统中电子定位程度。高场测量结果表明,应根据费米表面效应来理解应用磁场下的相变[6]。最近的一项无弹性中子散发研究揭示了双重性质,两者都巡回通过密度功能理论(DFT)计算进一步支持这种方法,该计算有利于5 f电子大部分巡回的情况[7]。
图1。各种石墨烯纳米力学谐振器。(a)双重夹紧谐振器。(b)完全夹紧的谐振器。(c)带有通向通道的完全夹紧谐振器。(d)使用SU-8聚合物的其他层完全夹紧谐振器。(e)蹦床形的谐振器。(f)H形谐振器。(g)单独夹紧谐振器。(h)三个双重夹紧的谐振器串联。(i)哑铃形的谐振器,中间有一个排气通道。(J)大量的鼓声谐振器。(k)语音晶体通过将悬浮的石墨烯膜变成周期性图案。(l)语音晶体将石墨烯薄片转移到预制的立柱阵列中。(a)经许可复制。[19] 2011年版权所有,施普林格。(b)经许可复制。[57]版权所有2018,美国化学学会。(c)根据创意共享CC-BY国际许可证的条款复制。[61]版权所有2020年,作者,由Springer Nature出版。(d)经许可复制。[26]版权所有2013,施普林格。(e)根据创意共享CC-BY国际许可证的条款复制。[64]版权所有2019,作者,由施普林格自然出版。(f)经许可复制。[65]版权所有2015,美国化学学会。(g)经许可复制。[66]版权所有2012,施普林格。(h)根据创意共享CC-By International许可证的条款复制。[23]版权所有,作者,由美国国家科学院出版。(i)根据创意共享CC-NC-ND国际许可证的条款复制。[67]版权所有2021,作者,由美国化学学会出版。(J)经许可复制。[68]版权所有2011,施普林格。(k)根据创意共享CC-BY国际许可证的条款复制。[35]版权所有2021,作者,由美国化学学会出版。(l)经许可复制。[36]版权所有2021,美国化学学会。
本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
1 ABOUT THIS MANUAL ..................................................................................... 1 1.1 Purpose ................................................................................................. 1 1.2 Scope .................................................................................................... 1 1.3 SAFETY INSTRUCTIONS ........................................................................ 1 2 INTRODUCTION ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 2 2.2产品概述INSTALLATION ............................................................................................... 3 3.1 Unpacking and Inspection ........................................................................ 3 3.2 Preparation ............................................................................................ 3 3.3 Mounting the Unit .................................................................................... 3 3.4 Power Connection .....................................................................................................................................................................................................................................................................................................................................TROUBLE SHOOTING .................................................................................... 17 7.OPERATION ................................................................................................... 7 4.1 Power-Up ............................................................................................... 7 4.2 Operation and Display Panel .................................................................... 7 4.3 LCD Display Icons ................................................................................... 8 4.4 LCD setting ............................................................................................................................................................................................. 9-12 4.5参考代码.........................................................................................................................................................................................................CHARGING LOGIC ......................................................................................... 14 5.1 3-stage Charging .................................................................................... 14 5.2 Equalize Stage ....................................................................................... 15 5.3 Setting Parameter and Default Value ........................................................ 16 6.SPECIFICATIONS ........................................................................................... 18-19 8.MPPT charger controller match to the Inverter ....................................................... 20 8.1 Match the inveter to the MPPT controller ................................................... 20 8.2 Matching MPPT function is prohibited........................................................ 19 8.3 Matching MPPT function successfully enabled ........................................... 21 8.4 Matching MPPT function is prohibited成功................................................. 21
摘要 —当前,正在开发基于非化学计量电介质的新一代高速、信息密集型阻变存储器。非化学计量氧化硅SiO x 的电子结构由参数x 的值设定。研究发现,在氢等离子体电子回旋共振中处理热SiO 2 会导致氧化硅中富集过量的硅,从而导致SiO x 中出现电子和空穴陷阱。SiO x 的导电性是双极的:电子从负偏置硅注入,空穴从正偏置硅注入。阴极发光(CL)实验证实了SiO x 中的陷阱是由于过量的硅造成的假设。基于在电子回旋共振氢等离子体中制备非化学计量氧化物的开发程序,制备了p ++-Si(100)/SiO x /Ni忆阻器金属-电介质-半导体(MDS)结构。这种结构具有SiO x 电阻开关的特性,不需要成型操作。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
