抽象的kagome金属显示出由于几何挫败感,扁平带,多体效应和非平凡拓扑而引起的竞争量子阶段。最近,在FEGE的抗铁磁阶段深处发现了一种新型的电荷密度波(CDW),这引起了由于与磁性密切的关系而引起的强烈关注。在这里,通过扫描隧道显微镜(STM),我们发现FeGE中的2×2 CDW非常脆弱,并且很容易被破坏到最初的1×1相中。发现小√3×√3CDW水坑与在生长样品中的2×2 CDW并存,并且也可以在CDW中断的中间过程中诱导,最终将转变为最初的1×1相。此外,在中断过程中,异国情调的中间CDW状态和独立的CDW核出现了。我们的第一原则计算在CDW波矢量周围的大动量区域中发现平面光学声子模式的平等软化,对应于具有近距离能量的众多竞争CDW。这可能导致CDW基态的强烈不稳定,负责STM观测。我们的发现提供了更多新颖的实验方面,以了解FEGE中的CDW,并建议类似Fege的Kagome金属是研究竞争CDW不稳定性物理学的理想平台。
近年来,各种基于载体的药物输送系统的设计和制造策略已迅速建立并应用于癌症治疗。这些系统对当前的癌症治疗贡献巨大,但需要进一步发展以消除药物负载能力低和严重副作用等障碍。为了实现更好的药物输送,我们提出了一种基于分子结构的易于制造的药物自输送系统的创新策略,该系统可用于共输送姜黄素类化合物和喜树碱的所有含氮衍生物,以更好地靶向癌症治疗并最大限度地减少副作用。形成机制研究表明,喜树碱衍生物和姜黄素类化合物的刚性平面结构以及相关的离去氢使它们能够在适当的条件下组装成纳米颗粒。这些纳米颗粒在不同条件下表现出稳定的粒径(100纳米)和可调的表面电荷,从正常生理条件(pH 7.4)下的约-10 mV增加到酸性肿瘤环境下的+40 mV。此外,小鼠体内实验表明,与伊立替康(喜树碱衍生物)相比,联合给药的伊立替康姜黄素纳米颗粒显著增强了肺和胆囊的靶向性,改善了巨噬细胞清除逃逸,改善了结直肠癌治疗,消除了危及生命的腹泻,为更好的靶向化疗和临床转化带来了希望。最后,基于结构设计的药物自递送系统策略可能会激发更多类似的自递送纳米系统的研究和发现,以用于更广泛的药物应用。
电荷载体孔为Spintronics和量子信息技术提供了一个非凡的系统。在本文论文中,我讨论了三维和低维孔系统中的自旋相关现象。特别注意在量子井的边界和电线的边界上的重孔相互转化,该电线控制参数值定义量子井,电线和点中的孔光谱值,例如效能质量,g-factors,g-factors,rashba and rashba and rashba and drainselhaus spin-orbit常数。最近,凝结物质系统中的拓扑现象,例如Majorana零模式的出现和分数量子大厅效应中的非亚伯阶段,引起了研究人员的巨大兴趣。电荷载体孔被证明是可能观察这些现象并推进拓扑量子计算的非凡环境。i讨论磁场中二维孔的光谱和波形。虽然可以用等距的兰道水平,地面孔和孔中的较重和灯孔描述,但在几个低洼的激发状态下,较重的孔和灯孔的表现与电子不同。特别有趣的是磁场中的孔光谱中的穿越。孔 - 孔相互作用可以与电子电子相互作用显着差异。除了在交换分裂中的差异外,这表明在磁场中的地面孔水平上可能出现甚至分母分数量子霍尔。GE孔量子点系统中的最新发展是基于孔的系统的新观点。i还布里斯(Brie)讨论了旋转的斑点,例如孔和电流的角动量(自旋)的相互转化,以及孔传输中自旋相关的干扰效果。
4.1。Wear Insulating Gloves..............................................................................................................................13 4.2.Mounting......................................................................................................................................................13 4.3.Remove the Charge Controller Cover....................................................................................................16 4.4.Connect the Charger Controller to an Auxiliary Battery....................................................................17 4.5.Connect the Charger Controller to a Solar Panel................................................................................18 4.6.Install a DC load (Optional).......................................................................................................................19 4.7.Install a Battery Temperature Sensor...................................................................................................20 4.8.安装电池电压传感器(可选)............................................................................................................................................................................................................................................................................................................................................................................................................. 20 4.9。安装蓝牙模块(可选)......................................................................................................................................................................................................................................................................................................... 21 4.10。Wire Inspection..........................................................................................................................................23 4.11.Install the Charge Controller Cover.......................................................................................................24
方法:具有GDM历史但没有预先存在的糖尿病的女性志愿者是从多种族的新加坡社区招募的。使用URA戒指为每个合格的女人提供一个自我监控的机会,该戒指每天提供有关步骤计数,宾夕法尼亚州,睡眠和就寝时间心率的反馈。干预小组还收到了个性化建议,旨在从整体上加强健康行为(饮食,PA,睡眠和压力)。饮食摄入量是由研究营养师评估的,而步骤计数,宾夕法尼亚州,睡眠和就寝时间的心率由健康教练根据OURA环数据进行评估。感知到的身心健康和福祉是自我报告的。临床结果包括通过HBA 1C和OGTT测试确定的血糖状态,体重指数,血压和脂质效果。
4.1。Wear Insulating Gloves..............................................................................................................................13 4.2.Mounting......................................................................................................................................................13 4.3.Remove the Charge Controller Cover....................................................................................................16 4.4.Connect the Charger Controller to an Auxiliary Battery....................................................................17 4.5.Connect the Charger Controller to a Solar Panel................................................................................18 4.6.Install a DC load (Optional).......................................................................................................................19 4.7.Install a Battery Temperature Sensor...................................................................................................20 4.8.安装电池电压传感器(可选)............................................................................................................................................................................................................................................................................................................................................................................................................. 20 4.9。安装蓝牙模块(可选)......................................................................................................................................................................................................................................................................................................... 21 4.10。Wire Inspection..........................................................................................................................................23 4.11.Install the Charge Controller Cover.......................................................................................................24
4.1。Wear Insulating Gloves..............................................................................................................................13 4.2.Mounting......................................................................................................................................................13 4.3.Remove the Charge Controller Cover....................................................................................................16 4.4.Connect the Charger Controller to an Auxiliary Battery....................................................................17 4.5.Connect the Charger Controller to a Solar Panel................................................................................18 4.6.Install a DC load (Optional).......................................................................................................................19 4.7.Install a Battery Temperature Sensor...................................................................................................20 4.8.安装电池电压传感器(可选)............................................................................................................................................................................................................................................................................................................................................................................................................. 20 4.9。安装蓝牙模块(可选)......................................................................................................................................................................................................................................................................................................... 21 4.10。Wire Inspection..........................................................................................................................................23 4.11.Install the Charge Controller Cover.......................................................................................................24
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
热力学系统通常保存能量和粒子数等量(称为电荷)。通常假设电荷相互交换。然而,不确定性关系等量子现象依赖于可观测量的交换失败。非交换电荷如何影响热力学现象?这个问题在量子信息理论和热力学的交叉点上出现,最近传遍了多体物理学。电荷的非交换已被发现会使热态形式的推导无效,减少熵的产生,与本征态热化假设相冲突等等。本期观点调查了非交换电荷量子热力学的主要成果、机会和相关工作。未解决的问题包括一个概念难题:有证据表明,非交换电荷可能在某些方面阻碍热化,而在其他方面增强热化。