我的博士学位的成功没有一个巨大的支持网络,我最大程度地赞赏和感激之情是不可能的。首先,我要感谢我的顾问罗伯特·麦克德莫特(Robert McDermott)教授,他在整个研究生生涯中指导我进行了几个项目,甚至对最细微的细节似乎无休止地了解了知识。一天,没有一个新想法或尝试测试的新理论。在他的领导下,我从对领域的几乎一无所知,到提出自己的问题并提出自己的理论进行测试。,当我们把他带出实验室时,罗伯特总是有一个有趣的故事来讲述诸如爆炸的低温恒温器或秘密俄罗斯掩体之类的事情。我还要感谢麦克德莫特实验室的其余成员在这些年中的工作和竞争。尤其要感谢Guilhem在我开始时将我带到他的翅膀上,因为他启动了我对Qubits,Ivan和Alex的理解,伊万和亚历克斯帮助我寻求更新实验室的软件基础架构,并为教会我所有关于噪音的教导。没有你们每个人,这里工作就不会一样。我的工作已经建立在实验室中其他每个学生的工作,无论是已经测试过的制造食谱还是低温器的设置和接线,为此,我非常感谢。我很幸运能在一路上有许多导师,这推动了我的物理职业发展。在大学里,有许多教授,学生和研究机会,我非常感谢您维持我对物理学的兴奋。Richardson先生首先让我对我的高中物理课上的物理学奇迹睁开了眼睛,教我们如何通过有趣,有趣的问题工作(几年后我以TA为ta!)。大学毕业后,我在西北国家实验室的Brent Vande-vender指导我。正是这种指导和经验影响了我去研究生并继续研究物理学的决定。当我介绍我物理生涯的这一章时,我对我的家人表示不足。当我还是个孩子的时候,我的父母向我提供了巡回演出和科学实验套件,并尽力回答我所有的“为什么?”我父亲总是非常支持我的想法,并鼓励我的批判性思维。我妈妈反复大喊:“我等不及要参加物理课!”事实证明,她对我对物理的热情是正确的。我的姐姐安娜,我的祖母和我的大家庭也充满了无休止的鼓励和爱。没有我的家人,这一切都是不可能的,我永远感谢他们不断的支持。研究生有时会令人沮丧,累人和令人生畏。我感谢我庞大而充满爱心的朋友网络,这些网络帮助我度过了艰难的时期,并为我的工作生活提供了平衡。对那些与我一起冒险的人,听了我,支持我,和我一起看日落或电影,和我一起玩飞盘,通常让我在这段旅程中保持理智,谢谢。
尽管成本高昂且耗时,但仍可在地面设施中评估功率 MOSFET (金属氧化物半导体场效应晶体管) 中重离子诱导的单粒子烧毁 (SEB) 风险。因此,很少有实验研究专门研究与描述离子诱导 SEB 现象相关的相关参数。在本文中,使用几种离子能量组合研究了低压功率 VDMOSFET (垂直双扩散 MOSFET) 中的重离子诱导 SEB。进行了自洽统计分析,以阐明电荷沉积与 SEB 触发之间的关系。将实验数据与文献中的功率 MOSFET 中 SEE (单粒子效应) 最坏情况预测模型进行了比较,首次支持其与 SEB 机制中最坏情况预测的相关性。
摘要 — 商用碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的栅极氧化物可靠性对其应用至关重要。恒压时间相关电介质击穿 (TDDB) 测量通常用于评估正常运行下 SiC 功率 MOSFET 的电介质故障时间。最近提出了一种基于氧化物隧穿电流行为的电荷击穿方法来预测电介质故障时间。该方法耗时较少,但要求器件的氧化物漏电流行为遵循通用包络线。这项工作比较了电荷击穿方法和恒压 TDDB 方法对商用 1.2 kV SiC MOSFET 的预测故障时间。结果表明,在低氧化场 (E ox < 9 MV / cm ) 下应用的恒压 TDDB 方法对器件寿命的预测最为保守。
本文研究了硅P-I-N光二极管中少数荷载载体的收集系数以及某些技术因素对其的影响。已经发现,由于光生荷载体的收集面积随着这些参数的增加而增加,因此少数荷载体的扩散长度和材料的电阻率对收集系数的值有显着影响。还发现,增加光电二极管收集系数的有效方法是确保光电二极管的高阻力区域的厚度等于少数荷载体的扩散长度的总和和空间电荷区域的宽度。研究了掺杂剂浓度对响应性和收集系数的影响。发现,与计算出的数据相反,在实验数据中,收集系数随着磷和硼浓度的浓度而增加,并且杂质的响应率降低,杂质的浓度降低,收集系数的降低是由于杂物的程度降低,而造成较小的范围较小的延伸率,而造成较小的频率延伸的速度延伸,并且频率降低了范围的延伸范围。关键字:硅; photodiode;反应性; tharge tomerclection;屏障容量PAC:61.72。ji,61.72.lk,85.60.dw
摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
硅自旋量子比特是用于大规模量子计算机最有希望的候选者之一,8 这得益于它们出色的相干性以及与CMOS技术的兼容性,可用于升级。先进的工业CMOS工艺流程可实现晶圆级均匀性和高器件成品率,但由于设计和操作条件不同,现成的晶体管工艺无法直接转移到量子比特结构上。因此,为了利用微电子行业的专业知识,我们定制了一条300毫米晶圆生产线,用于硅MOS量子比特集成。通过对MOS栅极堆栈进行精心优化和工程设计,我们报告了在毫开尔文温度下Si/SiOx接口上稳定均匀的量子点操作。我们提取了不同器件和各种操作条件下的电荷噪声,结果显示1 Hz时平均噪声水平低至0.61 μeV/√Hz,在某些器件和操作条件下甚至低于0.1 μeV/√Hz。通过对不同操作和设备参数下的电荷噪声进行统计分析,我们表明噪声源确实可以用两级涨落子模型很好地描述。这种可重现的低噪声水平,加上我们量子点的均匀操作,标志着 CMOS 制造的 MOS 自旋量子比特已成为成熟且高度可扩展的高保真量子比特平台。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 11 月 21 日发布。;https://doi.org/10.1101/2024.11.19.624257 doi:bioRxiv preprint
粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
i介绍了第三代Sun Smart系列MPPT太阳能电荷控制器,这是Systek设计和开发的尖端解决方案。此高级电荷控制器使用了快速,精确的创新最大点跟踪(MPPT)算法。太阳智能太阳能电荷控制器具有无风扇的套管,可抵抗灰尘和水,确保寿命更长。它能够在混合模式操作中控制任何逆变器,即使在没有太阳能的情况下,也可以充电。它还可以为在DC功率上运行的电器提供直流输出,同时保护电池免于过电。最多可以平行连接四个太阳智能太阳能电荷控制器,以增加电流和大电池的当前容量。其可选的WiFi功能允许远程监视其操作。它是最通用,最可靠的太阳能电荷控制器之一,具有许多在其他功能中的功能。
