草酸是生物体生产的最常见的低分子有机酸之一,它在草酸盐使用和处置的策略中多样化(Smith 2002)。例如,植物可能会在细胞内积聚,以获得电荷平衡,钙调节和防御,而真菌的草酸盐分泌与致病性有关,如Palmieri等人所述。(2019)。相反,细菌可以使用草酸盐作为能量和碳源(Herve等人2016)。在这种情况下,人类落在灰色区域。的确,在人类以及许多非人类动物中,草酸盐是乙二醇代谢的最终产物(Ermer等人。2023),由于酶促库缺乏草酸盐降解酶及其生理功能尚不确定(Palmieri等人2019)。然而,在自然界中草酸盐的广泛存在和使用反对人类中草酸盐的这种还原性的视力。的确,除了微生物或微生物群的结构化群落外,不能认为人类会殖民到外部环境中暴露于外部环境的所有表面,包括肠道,这代表了来自饮食中草酸盐的附加来源。据估计,在健康的个体中,饮食和内源性合成也同样有助于草酸盐水平(Mitchell等人。2019)。微生物群包括细菌和真菌,它们可能整合了宿主代谢途径,从而为草酸盐的合成和降解提供了酶,从而总体上有助于维持其稳态水平。考虑到分别称为原发性(pH)和次级(SH)高氧化尿症的草酸盐积累的病理弊端,这一点尤其重要,这导致肾脏中草酸盐的形成
抽象上下文。对啮齿动物的长期深度脑刺激(DBS)研究对于该领域的研究进度至关重要。但是,大多数刺激装置都需要夹克或大型头部安装系统,这些系统严重影响流动性和一般福利影响动物的行为。目标。开发一种临床前神经刺激植入系统,用于小动物模型中的长期DBS研究。方法。我们提出了一种称为软件定义的植入式平台(Stella)的低成本双通道DBS植入物,其印刷电路板尺寸为Ø13×3.3毫米,重量为0.6 g,当前消耗为7.6 µ µA/3.1 V,结合了一种基于环氧树脂的包装方法。主要结果。Stella提供具有广泛使用的商业电极的电荷平衡和可配置的电流脉冲。在体外研究表明,使用CR1225电池表明至少12周无错误的刺激,但我们的计算预测使用CR2032的电池寿命最多为3年。在成年大鼠中对丘脑下核的DBS的示例性应用表明,在42天内,完全植入的Stella神经刺激剂在42天内耐受良好的耐受性,而没有相关的术后阶段相关压力,从而导致正常动物行为。封装,功能的外部控制和监视被证明是可行的。用标准参数刺激通过丘脑下神经元引起C-FOS表达,证明了Stella的生物活性功能。意义。所有硬件,软件和其他材料均可在开源许可下获得。我们开发了一种完全可植入的,可扩展和可靠的DBS设备,该设备满足了在自由移动的啮齿动物疾病模型中对DB的反向转化研究的迫切需求,包括敏感的行为实验。因此,我们根据“人道实验技术的原理” - 替代,减少和精致(3R)添加了一项重要的动物研究技术。
关键字:Gan,Mishemt,MBE,MMIC,AL 2 O 3,可靠性摘要雷神已经在<111> si Hemt技术上采用了分子束外延(MBE)开发了gan的状态。相对于MOCVD(〜1000 o C)的分子束外延(MBE)的较低生长温度(〜750 o C)导致热性能提高和从IIII-V/SI界面减少微波损失。这些因素结合起来,以使最有效的高功率(> 4 w/mm)在高频(≥10GHz)上进行操作,这些操作通常与Si上的gan hemts无关。较低的温度MBE生长过程减少了生长后冷却后的GAN拉伸应变,这又使Aln成核层用于GAN HEMT生长。这与基于MOCVD的生长中使用的复杂的Algan/Aln菌株补偿层相反,这些层已显示出显着降低IIII-V外延层的总体导热率。此外,低温MBE ALN成核层导致Si/IIi-氮化物界面处的界面电荷降低。这种大大降低的电荷使雷神能够实现<0.2dB/mm的创纪录的低微波损失(对于SI上的GAN),最高为35 GHz,可与SIC上的GAN相当[1]。最重要的是,在100mm高电阻(> 1,000 ohm-cm)上实现MBE种植的Gan Hemt Epi层质量和均匀性时,记录了创纪录的低微波损失(> 1,000 OHM-CM)<111> Si,可与MOCVD在SIC上生长的GAN相当。板电阻低至423欧姆 /平方英尺(±0.8%),迁移率为〜1,600 cm 2 /v-s。这样做是为了使整个栅极电容,IDSS,IMAX和V t与为了减少门泄漏,雷神用ALD沉积了Al 2 O 3作为高k栅极介电介质形成不幸的。为了最大程度地减少门泄漏,而不会影响关键的RF设备特性(例如FT,FMAX,POWER和PAE),使用电荷平衡模型与栅极介电堆栈一起设计Schottky层厚度。