通过细指栅技术,在 InAs 纳米线上实现了集成量子点 (QD) 电荷传感器的串行三量子点 (TQD)。通过直接传输测量和电荷传感器检测测量,研究了器件在少电子状态下的复杂电荷状态和有趣特性。由 TQD 中的 QD 和传感器 QD 形成的电容耦合并联双 QD 的电荷稳定性图显示 TQD 和传感器 QD 之间存在明显的电容耦合,表明电荷传感器具有良好的灵敏度。通过电荷传感器测量 TQD 的电荷稳定性图,同时进行的直接传输测量和基于有效电容网络模型的模拟很好地再现了电荷稳定性图中的整体特征。使用集成电荷传感器在能量退化区域详细测量了 TQD 的复杂电荷稳定性图,其中所有三个 QD 都处于或接近共振状态,并且观察到了四重点和所有可能的八种电荷状态的形成。此外,还演示并讨论了 TQD 作为量子细胞自动机的运行。
硅量子点器件由于其延长的相干时间、紧凑的尺寸以及最近在实验中演示的相当大的量子比特阵列,成为大规模量子计算的有希望的候选者。尽管潜力巨大,但控制这些阵列仍然是一项重大挑战。本文介绍了一种新的虚拟门提取方法,以快速建立对单个量子点电位的正交控制。利用对器件物理学的深入了解,所提出的方法通过关注电荷态转变周围的关键区域,显著降低了实验开销。此外,通过采用高效的电压扫描方法,我们可以有效地精确定位这些电荷态转变线并滤除错误点。使用真实量子点芯片数据集进行的实验评估表明,与传统方法相比,速度提高了 5.84 倍到 19.34 倍,从而展示了加速硅自旋量子比特器件扩展的良好前景。
隧道耦合对的光学活性量子点(QDMS)(QDMS) - 有可能结合出色的光学特性,例如具有延长相干时间的较高的光 - 三轴偶联(S-T 0)。使用两个旋转形成的S -T 0基本受到固有保护,以免电磁场和磁场噪声。但是,由于通常使用单个门电压来稳定点的电荷占用率并控制点间轨道耦合,因此在最佳条件下S-T 0码头的运行仍然具有挑战性。在这里,可以在需要时通过需要将电场可调QDM光学地充电。四相光学和电场控制序列促进了2H电荷态的顺序制备,并随后允许对跨点耦合的可触觉控制。电荷是通过光学泵和电子隧道电离加载的。分别达到(93.5±0.8)%和(80.5±1.3)%的单孔充电效果。结合了有效的电荷态制备和点间耦合的精确设置,可以控制几翼Qubits,这是按需生成2D光子簇状态或微波和光子之间的量子转导所必需的。
研究了慢速高电荷氙离子的动能和中和能沉积对金纳米层表面纳米结构形成过程的影响。通过在晶体硅 Si(100) 基底上电子束蒸发金来制备厚度为 100 nm 的纳米层。样品在 Jan Kochanowski 大学(波兰凯尔采)的凯尔采 EBIS 设施中在高真空条件下进行辐照。辐照条件为恒定动能 280 keV 和不同的离子电荷态(Xe q +,q = 25、30、35、36 和 40),以及恒定电荷态 Xe 35 + 和不同的动能:280 keV、360 keV、420 keV 和 480 keV。离子通量为 10 10 离子/cm 2 的水平。在辐射之前和之后,使用原子力显微镜研究了纳米层表面。结果观察到了纳米层表面以陨石坑形式出现的明显变化。对陨石坑尺寸(表面直径和深度)的系统分析使我们能够确定沉积动能和中和能对获得的纳米结构尺寸的影响。基于离子里德堡态布居的量子双态矢量模型,在微阶梯模型中对结果进行了理论解释。固体内部电荷相关的离子-原子相互作用势用于计算核阻止本领。根据该模型,纳米结构的形成受表面前方离子中和过程和固体内部动能损失的控制。这两种过程在表面结构形成过程中的相互作用用临界速度来描述。利用所提出的理论模型计算了中和能、沉积动能和临界速度,并与实验结果进行了定性比较。结果与先前对单电离氙和结晶金表面的实验数据和分子动力学模拟结果一致(归一化后)。
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
抽象的BR 2 /BR - 由于其高电位,溶解性和低成本,是流量电池中有前途的氧化还原夫妇。但是,Br - 和Br 2之间的反应仅涉及单电子转移过程,这限制了其能量密度。在此,研究了一种基于Br - /Br +的新型两电子转移反应,并通过BR +互化来实现石墨,形成溴 - 稀释岩插入化合物(BR – GIC)。与原始的BR - /BR 2氧化还原对相比,石墨中BR插入 /去干扰物的氧化还原电位高0.5V,这有可能大大增加能量密度。与电解质中的Br 2 /Br - 不同,由于石墨中的插入位点的降低,石墨中BR插入的扩散速率随着电荷态的增加而降低,并且石墨结构的完整性对于互相反应很重要。结果,电池可以连续运行300多个循环,其库仑效率超过97%,在30 mA /cm 2时的能量效率约为80%,而与Br - /Br 2相比,能量密度增加了65%。与双电子转移和高度可逆的电化学过程相结合,BR Intercalation Redox夫妇表现出非常有希望的固定能量存储前景。
GESE最近由于其具有吸引力的光学和电性能以及地球丰富性和低毒性而成为光伏吸收材料。然而,与冲击式 - 赛车限制相比,GESE薄膜太阳能电池(TFSC)的效率仍然很低。点缺陷被认为在GESE薄膜的电和光学特性中起重要作用。在这里,我们执行第一个原理计算以研究GESE的缺陷特征。我们的结果表明,无论在GE丰富或富含SE的条件下,费米水平始终位于价带边缘附近,导致未掺杂样品的P型电导率。在富含SE的条件下,GE空缺(V GE)具有最低的地层能,在价带边缘上方0.22 eV处,(0/2)电荷态过渡水平。高密度(高于10 17 cm-3)和V ge的浅层暗示它是GESE的p型起源。在富含SE的生长条件下,SE I在中性状态下具有低层的能量,但没有引入带隙中的任何缺陷水平,这表明它既不有助于电导率,也不导致非辐射重组。此外,GE I引入了深层电荷状态过渡水平,使其成为可能的重组中心。因此,我们建议应采用富有SE的条件来制造高耐高率的GESE太阳能电池。
在进行各种研究的过程中,观察到保护环光电二极管的暗电流水平不受控制地增加的问题,这种问题在温度T 293 K 时和(很大程度上)在高温(T 358 K)下测试设备时都表现出来。众所周知,微电子技术总是使用半导体器件和集成电路的表面保护(钝化)。在这种情况下,最好的解决方案是热生长SiO 2 层。然而,即使是受介电层保护的表面也并不总是保持稳定。本文介绍了基于高电阻率p型硅的ap-i-n光电二极管的开发结果,该光电二极管具有更高的响应度和更低的保护环在1064 nm波长处的暗电流水平。在提出的光电二极管设计中,晶体外围氧化物的厚度减小,以减少电流和电荷态的位错分量对逆特性的影响。磷扩散(驱入)后,除去磷硅酸盐玻璃,并进行额外的光刻,在此期间整个外围氧化物层都被蚀刻掉。在磷扩散(蒸馏)的第二阶段,在光敏区域和晶体外围生长厚度为190-220 nm 的抗反射氧化物。光敏区域、保护环和晶体外围部分由在第一次热操作中生长的650-700 nm 厚的氧化物隔开。光电二极管的生产采用与商业生产相同的操作条件,并将其参数与标准设计制造的器件进行了比较。分析表明,与商用器件相比,所提出设计的光电二极管不仅在室温下,而且在358 K 的温度下都具有更低、更稳定的暗电流。
概述 光学时钟和频率标准是当今最精确的测量设备。但是,需要进一步改进以扩展其在基础计量学中的应用。该项目研究了激光冷却的捕获离子,作为下一代最高精度光学时钟的参考。虽然大多数带有捕获离子的精确光学时钟都是基于单个离子,但该项目研究了多达数百个离子的库仑耦合固体状态的集合,称为库仑晶体 (CC)。这种多离子方法为稳定性更高的时钟提供了更高的信噪比,并使得研究由碰撞或相互作用引起的微小频率偏移成为可能。研究了时钟和冷却剂离子的不同组合,并为对以前无法接近的系统进行精确测量提供了机会,例如具有光学核跃迁的高电荷氩离子和钍离子。主要成果是开发和实施了一系列不同离子(包括放射性同位素 229 Th)的加载和冷却方法。已经证明了双离子、两种物种时钟操作,并且已经对协同冷却的 115 In + 和 40 Ar 13+ 进行了精确的频率测定,其中后者的结果代表了高电荷离子精确测量的突破。需求 在 SI 单位制中,时间单位的实现处于关键位置,因为单位秒通过定义常数包含在七个基本单位中的六个的定义中。光学时钟研究的进展继续快速降低不确定度,目前评估范围为 10 -19。在准确性或稳定性方面具有特定优势的新参考系统需要研究新的实验方法以及相关的原子、分子和核数据。到目前为止,尚未详细研究过激光冷却的两种库仑晶体的结构和动力学,而控制和理解这种结构和动力学对于改进光学时钟和频率标准至关重要,并且对于优化协同冷却和光谱学也必不可少。协同冷却,即一种离子物种被激光冷却,另一种离子物种通过库仑相互作用冷却,可以研究更广泛的光学时钟相关离子。现有的光学时钟陷阱加载方法已针对单电荷物种进行了优化,并基于蒸发或激光烧蚀,结合电子撞击或光电离。然而,它引入了离子之间以及与离子阱的时间相关电场之间的额外库仑相互作用,并且需要进一步研究这些相互作用引起的频率偏移。对半衰期为 7920 年的放射性 229 Th 同位素的研究需要对 Th 3+ 和更高电荷态采用有效的加载方法,以便以最小源活动操作核光钟。离子钟会受到与背景原子和分子碰撞的影响,从而产生一系列影响,从频率偏移、亚稳态能级的激发或猝灭到通过电荷交换或化学反应导致的离子损失。为了可靠地排除或估计低 10 -18 能级的系统偏移,必须系统地研究碰撞的影响。在这个原子和核物理之间的新交叉学科领域中,所需的先进实验基础设施通常无法在一个高度专业化的实验室中使用。因此,需要便携式激光光谱设备。目标
非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。