B. 非易失性存储器 IP 非易失性存储器 (NVM) 宏广泛用于数字电路中,用于存储指令、用户数据或任何配置数据。在 PROMISE 中,NVM 宏保存用户定义的 FPGA 配置数据。FPGA 由多个 LUT 实例组成。一般来说,每个 LUT 都有配置信号,这些信号定义 LUT 执行的逻辑功能。同时,这些配置信号的集合定义了 FPGA 的特定用户功能。在 PROMISE FPGA 中,配置数据在通电时从 NVM 上传到 LUT 寄存器。显然,NVM 的数据容量等于 FPGA 配置信号的数量加上辐射加固技术所需的冗余位。在 PROMISE 中设计的 NVM 宏基于 180 nm HV CMOS 工艺中提供的 E2PROM 类型的 SONOS 单元。该单元有望提供令人满意的抗 TID 效应鲁棒性。E2PROM 类型的写入/擦除操作提供可靠的数据保留参数。单元耐久性(擦除/写入周期数)比 FLASH 单元类型差,但目标应用不需要高耐久性。通过使用标准 DARE RH 缓解方法,NVM 内存可抵御 SEL 和 SEU/SET。除此之外,还实施了具有单纠错双错检测 (SECDED) 功能的纠错码 (ECC) 作为 SEU 缓解方法。ECC 还提高了 NVM 的一般读取稳健性,因此在太空应用中非常需要。[3] 中详细描述了不同类型的纠错码。因此,NVM 宏将用作坚固且抗辐射的数据存储 IP。NVM 宏具有 344 kbits 用户数据容量,并由 32 位数据字组成,其中 24 位为用户数据,8 位为 ECC。它分为 2 个 32x22 页的存储体。每页包含 8 个字。内存组织参数在表 II 中提供。 NVM 具有标准同步并行用户界面,可简化读取操作。NVM 具有内置电荷泵以及所有控制逻辑,可根据用户指令执行擦除/写入操作。NVM 宏中实现了各种测试模式,以支持生产测试流程。断电模式是另一个内存功能,它
本 IC 是锂离子 / 锂聚合物充电电池的高端保护 IC,包含高精度电压检测电路、延迟电路和三重升压充电泵,用于驱动外部充电 / 放电 FET。适用于保护 1 节锂离子 / 锂聚合物充电电池组免受过充电、过放电和过电流的影响。通过使用外部过电流检测电阻,本 IC 实现了高精度过电流保护,且受温度变化的影响较小。 特点 ● 高精度电压检测电路 过充电检测电压 3.500 V ~ 4.800 V (5 mV 进阶) 精度±15 mV 过充电解除电压 3.100 V ~ 4.800 V *1 精度±50 mV 过放电检测电压 2.000 V ~ 3.000 V (10 mV 进阶) 精度±50 mV 过放电解除电压 2.000 V ~ 3.400 V *2 精度±75 mV 放电过电流 1 检测电压 -3 mV ~ -100 mV (0.25 mV 进阶) 精度±1 mV 放电过电流 2 检测电压 -6 mV ~ -100 mV (0.5 mV 进阶) 精度±3 mV 负载短路检测电压 -20 mV ~ -100 mV (1 mV 进阶) 精度±5 mV 充电过电流检测电压3 mV ~ 100 mV(0.25 mV 进阶) 精度±1 mV 0 V 电池充电禁止电池电压 1.45 V ~ 2.00 V *3(50 mV 进阶) 精度±50 mV ● 过热检测功能:有、无 ● 带外置 NTC 热敏电阻的高精度温度检测电路(阻值:25°C 时 100 kΩ±1% 或 470 kΩ±1%,B 常数:±1%) 过热检测温度 +65°C ~ +85°C(5°C 进阶) 精度±3°C 过热释放温度 +55°C ~ +80°C(5°C 进阶)*4 精度±5°C ● 内置电荷泵:三重升压(调节电压 = V DD + 4.2 V) ● 检测延迟时间仅由内部电路产生(不需要外置电容器)。 ● 放电过电流控制功能 放电过电流状态的解除条件 : 断开负载、连接充电器 ● 0 V 电池充电 : 允许、禁止 ● 休眠功能 : 有、无 ● 省电功能 : 有、无 ● PS 端子内部电阻连接 通常状态下 : 上拉、下拉 省电状态下 : 上拉、下拉 ● PS 端子内部电阻值 : 1 MΩ ~ 10 MΩ (1 MΩ 进阶单位) ● PS 端子控制逻辑 : 动态 "H"、动态 "L" ● 高耐压 : VM 端子、CO 端子和 DO 端子 : 绝对最大额定值 28V ● 宽工作温度范围 : Ta = -40°C ~ +85°C ● 低消耗电流 工作时 : 6.0 µA 典型值、10 µA 最大值 (Ta = +25°C) 休眠时 : 50 nA 最大值 (Ta = +25°C) 过放电时 : 1.0 µA 最大值(Ta = +25°C) 省电时:50 nA(最大值) (Ta = +25°C) ● 无铅、Sn100%、无卤素 *5
数千到数百万个敏感信号需要通过稀释制冷机的所有温度阶段进行传输,以操作由许多量子位组成的未来大规模量子处理器。导热同轴电缆数量的激增将超出制冷机的冷却能力,对量子核心造成不利影响。将控制电子设备降至低温允许使用现有的超导电缆,减轻低温阶段之间的热传导,并且似乎是实现操作量子位数可扩展性的明确途径。这项博士论文旨在探索在低温下将工业 CMOS 28nm 全耗尽绝缘体上硅 (FD-SOI) 技术用于量子计算应用。我们的第一个目标是将有关低温下 FD-SOI 28nm 晶体管的稀疏现有知识扩展到电路设计的实际方面,然后用于开发紧凑模型。为了加快对具有长达一小时的固有冷却周期的单个器件的表征,我们设计了一个集成电路,该集成电路多路复用了数千个具有不同几何形状和栅极堆栈类型的晶体管,用于低频测量电流-电压特性和从 300 到 0.1K 的配对分析。我们讨论并分析了不同温度下电路设计中重要量的变化趋势,例如跨导、电导和单个晶体管的跨导与漏极电流比。其次,我们探索了半导体量子器件与经典电子器件的低温共积分和全片上集成,旨在实现低至毫开尔文范围的特定测量。我们首先通过设计和表征低功耗跨阻放大器 (TIA) 来关注量子点器件的亚纳安电流测量。高增益放大器成功应用于测量单量子点和双量子点器件的电流,这些器件分别通过引线键合几毫米或片上集成几微米。为了进一步利用集成到同一基板的优势,我们将 GHz 范围的压控振荡器连接到双点的其中一个栅极,以尝试观察完全集成设备中的离散电荷泵。最后,我们提出了一种新的测量方案,利用低温电子学功能作为众所周知的反射测量法的替代方案,解决了单个量子器件栅极电容的测量问题。通过在 200 MHz 范围内集成电压控制电流激励和电压感应放大器,两者都靠近连接到 LC 槽的量子器件,器件电容变化的读出电路变成纯集总元件系统,具有谐振电路的阻抗测量,而没有任何像反射法中那样的波传播。这种方法增加了测量装置的简单性和紧凑性。我们甚至用由晶体管和电容器组成的有源电感器取代了反射法中使用的笨重无源电感器,在相同电感下面积降低了 3 个数量级,从而提供了更好的可扩展性。由此产生的电路成功测量了 4.2K 下纳米晶体管的 aF 电容变化,揭示了栅极电容中随栅极和背栅极电压而变化的振荡量子效应。在这篇论文的最后,给出了一幅与电路架构和设计相关的挑战的图景,最终目标是进入大规模量子处理时代。
植入式神经接口在帮助瘫痪、截肢或各种神经系统疾病患者恢复功能方面具有巨大潜力。为了精确映射大脑各个区域的神经活动并提高信息传输速率,记录通道的数量显著增加,最近的系统集成了数千个或更多通道 [1-2]。这就需要能够处理数百 Mb/s 吞吐量的无线链路,这对无线植入物的功耗、尺寸和传输范围提出了重大挑战。由于体通道通信 (BCC) 能够实现毫米级外形尺寸,因此在脑植入物中的应用日益广泛 [3-4]。然而,它在数据速率和传输距离方面都面临限制。另一方面,脉冲无线电超宽带 (IR-UWB) 通信由于其高数据速率和低功耗而提供了一种有前途的解决方案 [5- 6]。然而,现有的 IR-UWB 发射器 (TX) 受到厘米级传输范围和较大尺寸的阻碍,使其并不适合长期植入。实现米级传输距离的远场射频辐射为患者提供了相当大的活动自由。然而,它需要一种高效的无线链路,符合大脑数十 mW/cm 2 的严格功耗要求。为了应对扩大植入式 TX 传输范围同时最小化其尺寸和功耗的挑战,本文介绍了一种经皮、高数据速率、完全集成的 IR-UWB 发射器,它采用新颖的协同设计的功率放大器 (PA) 和天线接口来增强性能。与最先进的 IR-UWB TX [5-6] 相比,通过协同设计的接口,我们实现了 49.8 平方毫米 (8.3 毫米×6 毫米) 的最小占用空间和 1.5 米的最长传输范围。图 1 展示了所提议的 TX 的架构,它结合了开关键控 (OOK) 调制方案和基于相移键控 (PSK) 的加扰。使用 PSK 加扰可以增强对极性的控制,从而有效地消除 OOK 输出频谱中的离散频谱音调,以符合 FCC 监管要求。正交本振 (LO) 信号由基于 2 级环形振荡器 (RO) 的整数 N 宽带锁相环 (PLL) 生成,提供类似 LC-VCO 的抖动性能。脉冲发生器输出 2ns 脉冲宽度的 OOK 数据,该数据被馈送到带有可编程延迟线 (DL) 的脉冲整形器 (PS)。PS 与开关电容 PA (SCPA) 一起在 RF 域中进行 FIR 滤波,从而提高频谱效率。无线链路由片外偶极天线建立,选择该天线是因为其与小型化植入物兼容,因为与单极天线相比,它不需要大的接地平面。图 2 显示了基于反相器的相位多路复用器 (PHMUX)、PS 和 SCPA 的框图。PHMUX 和 SCPA 均采用全差分架构,无需片外平衡器。为了提高功率和面积效率,同时确保有效的旁瓣抑制,采用了 4 位三角模板。该模板可以配置为对称或不对称,从而提高符号间干扰 (ISI) 性能。图 2(右上)将所提出的调制方案的模拟输出频谱与理想的三角包络进行了比较,表明在旁瓣抑制和主瓣带宽方面具有可比的性能。图 3 说明了数字/电压控制 RO 的电路实现,具有一对延迟元件和混合控制电阻器。振荡频率由 4 位数字控制字 (FC) 控制,以克服 PVT 变化,以及差分环路滤波器产生的两个模拟信号(即 VCP 和 VCN)。为了最大限度地减少基板噪声耦合,我们采用了差分电荷泵 (CP) 和环通滤波器 (LPF),与单端配置相比,调谐范围几乎增加了两倍。测量的 PLL 锁定频率范围