免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
该场地由强大的需求响应计划支持,该计划已在本可行性研究中进行了考虑。需求响应是公用事业公司为在一年中的某些时间降低消耗而提供的一种激励措施。如果该设施能够在需求事件期间成功减少其需求,那么公用事业公司将为每减少的千瓦支付预先批准的金额。对于此分析,我们假设每减少的千瓦的保守奖励为 12.00 美元。这个金额被认为是保守的,因为 2018 年和 2019 年期间的奖励价值高达 19.00 美元。UL 指出,光伏阵列的空间有限,因此,优化太阳能+储能的尺寸以最小化占地面积并最大化节省至关重要。对于这个设施,UL 和客户确定了在校园内安装 500 千瓦车棚光伏的潜力。为了进行分析,UL 考虑了一系列市售的 72 块多晶硅电池板,这些电池板固定倾斜,面向西南地平线,可产生 789,000 千瓦时的电力。
电容性微机械超声传感器(CMUT)技术在过去十年中一直在迅速发展。在制造和集成方面的进步,再加上改进的建模,使CMUT能够进入主流超声成像。与常规技术相比,CMUT超声传感器传达了许多优势,例如大带宽和效率[1],[2],易于制造大型阵列和较低的成本。CMUT是一种高电场设备,通过通过充电和分解等问题来控制高电场,可以具有具有优越的带宽和敏感性的超声传感器,可以与电子设备集成并使用传统的集成电路制造技术制造,并具有所有优势。可以使CMUT设备灵活地包裹在圆柱体甚至人体组织上,并且由于使用Su-8 [3],[4],[8]或Polyirimide [5],[8],所有这些都可能使所有这些可能。在本文中,我们介绍了两种具有基本重要性的电介质材料的电气表征,以制造具有提及的特征的设备:氧化硅(SIO 2)在电荷注入和击穿方面对高电场具有出色的响应,以及具有优化且具有优化结构和
我们结合使用高速视频成像和电测量来研究水滴落在预带电固体表面时撞击能量如何直接转换为电能。在各种撞击条件(初始高度、相对于电极的撞击位置)和电参数(表面电荷密度、外部电路电阻、流体电导率)下进行系统性实验,使我们能够定量描述电响应,而无需基于水滴-基底界面面积演变的任何拟合参数。我们推导出此类“纳米发电机”所收集能量的缩放定律,并发现通过匹配外部电能收集电路和流体动力学扩散过程的时间尺度,可以实现最佳效率。
3 受保护的场所是指在紧急安排下被定义为 A 类或 B 类天然气优先场所的场所。这些场所在紧急情况下仍可使用天然气,因为关闭这些场所会危及生命。这些场所包括医院、养老院等。4 如果提前两个工作日以上通知,则不收取任何费用。能源供应商必须在预安装期间向消费者说明如果消费者取消或重新安排安装访问可能收取的任何费用。5 这可能在 Ofgem 根据《1986 年天然气法》第 33A、33AA、33AB、33D 或 47 条和/或《1989 年电力法》第 39、39A、39B、42A 或 60 条制定的法规中有所规定。6 除非是在消费者不在场的情况下也可以进行工作,例如:更换被篡改的仪表或在主动安装和离开实例中进行的安装访问的各个方面。
摘要:本文介绍了交流现代电表的设计和构造。该电表旨在克服由于手动读数而产生的误差,并最大限度地减少设备的空间消耗。该电表便携且适应性强,因为它可以测量一个单位的电压、电流、频率、功率、能量、功率因数。交流现代电表有几个优点,包括测量住宅用电量、工厂用电量、实验室测量电压、电流、功率、能量、功率因数和频率。需要单独的电表来估计电气参数,但交流现代电表可以测量电压、电流、功率、能量、功率因数、频率并同时在 LCD 上显示它们。设计的交流现代电表使用 Arduino-UNO 和 PZEM-004T 计算电气参数,并同时在数字编程屏幕上显示数值。交流现代电表为电气设备提供准确而有效的读数,也用于电路开发和测试实验室的安全目的。万用表可以测量电压、电流、频率,但不能同时显示所有这些,而交流现代电表在测量和监控电压、电流、功率、电能、功率因数和频率方面具有很大的优势。
2017 年 10 月,昆士兰大学参议院批准了沃里克太阳能农场计划的商业案例,并让昆士兰大学走上了从根本上改变其电力消费和采购方式的道路。其中包括批准成为澳大利亚第一所直接参与批发电力现货市场的大学。作为一家大型能源生产商和大型能源消费者(“Gensumer”),昆士兰大学现在拥有相对独特的能力,可以利用作为能源市场双方参与者的机会来最大化价值,并以灵活、可持续和最低成本的方式满足昆士兰大学的能源需求。从被动零售电力客户转变为批发电力市场的积极参与者,昆士兰大学现在不仅要控制用电量,还要控制用电时间。
摘要 - 柔软,可拉伸的传感器,例如人工皮肤或触觉传感器,由于材料的依从性较低,对于众多软机器人应用而言,具有吸引力。导电聚合物是许多软传感器的必要组成部分,这项工作介绍了3D打印导电聚合物复合材料的机电表征。使用数字光处理(DLP)的3D打印机进行表征,将狗骨形样品打印3D。3D可打印的树脂由单体,交联,导电纳米填充剂和照相机组成。表征是在两个轨道中进行的。首先,研究了两个不同组成的效果,其次,探索了导电纳米纤维浓度的影响。交联,将碳纳米管(CNT)用作导电纳米填料。样品被打印3D并使用机电测试设置进行表征。为了展示3D打印软机器人技术的实用程序,由3D打印了由导电和非导电树脂组成的基于电容的操纵杆传感器。
项目简介 这项名为“电表后储能”的计划将专注于新型无关键材料电池技术,以促进电动汽车 (EV) 充电、太阳能发电技术和节能建筑的整合,同时最大限度地降低成本和对电网的影响。对于 350 kW 或更高水平的超快速充电,需要采用新方法来避免显著的负面成本和弹性影响。但是,可以合理地假设 BTMS 解决方案将适用于其他间歇性可再生能源发电源或短时、高电力需求电力负载。BTMS 研究旨在开发创新的储能技术,专门针对 10 MWh 以下的固定应用进行优化,以最大限度地减少对电网进行重大升级的需要。此外,避免过度的大功率消耗将消除使用现有技术进行 350 kW 快速充电期间产生的超额需求费用。实现这一目标的关键是利用电池存储解决方案,该解决方案可以高功率放电,但可以以标准较低电价充电,充当连接电网和其他现场发电技术(如太阳能光伏 (PV))的电力储存器,从而最大限度地降低成本和电网影响。要取得成功,必须开发新的创新集成处理方法,以实现固定存储、光伏发电、建筑系统和电网之间的无缝交互。