本研究介绍了 Power-to-X 工艺中电解设施集成对电网的影响。新颖的模拟设置结合了高分辨率电网优化模型和碱性水电解的详细调度模型。通过设置不同的电解设施安装容量和生产策略,研究了德国北部电力线的利用率和拥堵情况。对于高达 300 MW(~50 ktH 2 /a)的电解容量,可以观察到对电网的局部影响,而更高的容量会造成超区域影响。因此,影响被定义为偏离平均线路利用率 5% 以上。此外,最小线路拥堵被确定为与电解设施的每日约束生产策略相一致。我们的结果表明,综合电网设施运行的良好折衷方案可以最大限度地降低生产成本,并减少对电网的影响。
- 调查中的示例案例:阴离子交换膜电解1。基于降解2。确定恒定电压(效率)与恒定电流(生产)操作3。确定最有影响力的参数,并在H2A模型和性能模型4之间建立相互作用。贯穿指定的操作条件范围,以确定最低的H2成本
4 氢气生产 13 4.1 文献综述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 电解器 OPEX 成本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
2023财年对国防核不扩散拨款的预算请求反映了2021财年颁布水平的总体增长3.8%。此变化由以下增加的增加组成:新的高测低含量铀(Haleu)恢复项目;增加对武器控制监控和验证的支持;并为了解决核反增殖的关键差距的反恐和反扩散;并支持核紧急支持小组(NEST)执行DOE的主要任务基本功能 - 2,应对核事件。公法授权:•P.L。106-65,《国家核安全管理法》,经修订•P.L. 117-81,《 2022财政年度国防授权法》•P.L. 117-103,《合并拨款法》,2022年106-65,《国家核安全管理法》,经修订•P.L.117-81,《 2022财政年度国防授权法》•P.L. 117-103,《合并拨款法》,2022年117-81,《 2022财政年度国防授权法》•P.L.117-103,《合并拨款法》,2022年
摘要该项目涉及在印度等发展中国家使用可再生电力来生产大规模使用的氢。印度的氢冰车市场被确定为氢/金属氢化物技术的潜在近期应用。印度不仅代表了一个大型的两轮车市场,而且还代表着最快的市场。氢可以使用两个可再生,分布的电能,PV和基于渣nopasse的能力的来源来自水的电解。甘蔗渣是制糖业的副产品。我们展示了这两种情况在经济上是如何可行的。卵子金属氢化物用于在板载和运输中存储氢。氢/金属氢化物的其他用途包括分布式发电,以替代污染煤油或柴油发电机套件以及用于便携式功率。因此生产的可再生氢也可以用作烹饪燃料。
氢气快照:水电解技术评估 主要作者: McKenzie Hubert,氢能和燃料电池技术办公室 (HFTO) Anne Marie Esposito,HFTO David Peterson,HFTO Eric Miller,HFTO Joseph Stanford,HFTO 审阅者: Jai-Woh Kim,化石能源和碳管理办公室 (FECM) Eva Rodezno,FECM Jennifer Roizen,基础能源科学 Viviane Schwartz,基础能源科学 Steve Capanna,政策办公室 (OP) Ryan Wiser,OP Brandon McMurtry,OP Sunita Satyapal,HFTO Katherine Rinaldi,HFTO James Vickers,HFTO Elias Pomeroy,HFTO Tomas Green,HFTO Michael Hahn,HFTO Rick Farmer,HFTO Michael Ulsh,国家可再生能源实验室 (NREL) Alex Badgett,NREL Bryan Pivovar,NREL Caitlin Murphy,NREL Micah Casteel,爱达荷州国家实验室 Brian James,战略分析公司 Yaset Acevedo,战略分析公司 Jacob Prosser,战略分析公司
1 卢布尔雅那大学机械工程学院,Aškerčeva 6, 1000 卢布尔雅那 2 弗莱贝格矿业技术大学,akademiestrasse 6, 弗莱贝格 09599,德国
摘要:冯·诺伊曼(Von Neumann)计算机目前未能遵循摩尔定律,受到冯·诺伊曼(Von Neumann)瓶颈的限制。为增强计算性能,正在开发可以模拟人脑功能的神经形态计算系统。人造突触是神经形态结构的必不可少的电子设备,它们具有在相邻的人造神经元之间执行信号处理和存储的能力。近年来,电解质门控晶体管(EGT)被视为模仿突触动态可塑性和神经形态应用的有前途的设备。在各种电子设备中,基于EGT的人工突触提供了良好稳定性,超高线性和重复循环对称性的好处,并且可以从多种材料中构造。他们还在空间上分开“读”和“写”操作。在本文中,我们对神经形态应用的电气门控晶体管领域的最新进展和主要趋势进行了回顾。我们介绍了电动双层的操作机理和基于EGT的艺术突触的结构。然后,我们回顾了基于EGT的人工突触的不同类型的通道和电解质材料。最后,我们回顾了生物学功能中的潜在应用。
迄今为止安装的最大的 SOEC 系统规模在 100 千瓦 (kW) 到 1 兆瓦 (MW) 之间。大多数都是作为试点或示范项目安装的,因此不代表商业部署。8 但是,仅根据这些项目来判断 SOEC 的商业准备情况并不能公正地评价该技术:SOEC 在设计和制造上与固体氧化物燃料电池 (SOFC) 几乎完全相同,后者已经在备用发电和微电网应用中以远高于千兆瓦 (GW) 的规模部署。因此,可以预期从 SOFC 部署和制造经验中学到的知识将转化为 SOEC。也许并不奇怪,随着电解器需求的激增,许多积极参与 SOFC 开发的公司最近都表示有兴趣制造 SOEC。