设备,RFB电解池很容易访问,可实现电解质缩放,维护和潜在的新氧化还原夫妻的交换(图1 A)。尽管具有优势,但对于许多新兴的网格应用来说,当前的RFB迭代被认为太昂贵了,[1,4,5]激励研究改进的电解质形式,[6,7]分离技术,[8-10]运营策略,[11],[11]和材料设计。[12]特别是,增加的功率密度可以实现更紧凑的有效反应堆,可以满足运行需求,从而降低电化学堆栈尺寸和成本。在反应堆内,多孔碳电极支持几个重要功能,包括导电和热量,从而进行氧化还原反应发生的表面积,通过反应器分布电解质并调节操作压力下降。[13]因此,室内和微结构特性会影响电化学和流体动力学的表现,最终影响系统效率和成本。[14]从历史上看,常规的RFB电极已成为纤维垫,源自聚丙烯硝基烯(PAN)前体,并组装成连贯的结构,包括纸,布或毡。[15]由于其渗透性(K≈10-10-10至10-12 m 2),(电)化学稳定性和电子电导率,此类格式对于对流驱动的电化学技术有效。每个独特的纤维排列都会产生具有特质的构造
标为 A 的问题很简单,标为 B 的问题难度更大,标为 C 的问题旨在让学生思考,标为 S 的问题则是概括性的。WebLearn 上的“化学家物理学”下有在线物理教程。1. 电流。漂移速度 1.1AA 横截面积为 A 的导线每单位体积包含 n 个传导电子。证明导线中的电流等于 i = nAve 其中 e 是电子上的电荷,v 是漂移速度。1.2A 早期的直流电表将 11% 的电流转移到电解池中,锌离子在电解池中被还原为锌。然后使用沉积的锌的质量来测量供给房屋的电荷。如果在一个月内沉积了 65.4 克锌,则供给了多少电荷?1.3AA 半径为 800 μ m 的银导线承载的电流为 15 mA。假设每个银原子释放一个传导电子,计算该导线中电子的漂移速度。银的摩尔体积为 10.27 cm 3 mol –1 。1.4A 碘化银是快速离子导体。在 420 K 以上,银离子变得可移动并导电,而碘离子保持固定。半径为 1.0 cm 的碘化银圆盘承载着 30 mA 的电流。计算银离子的漂移速度。碘化银的密度为 5683 kg m –3,相对分子质量为 234.773。1.5A 在横截面积为 1.00 cm 2 的电导池中,含有 1.00 mM 的 RbBr 溶液,流过的电流为 1.56 μ A。假设两个离子的漂移速度相等且方向相反,求它们。
从源头分离的尿液中回收资源可缩短地球上的营养循环,对深空探索的再生生命支持系统至关重要。在本研究中,开发了一种强大的两阶段、节能、不依赖重力的尿液处理系统,将新鲜真实的人类尿液转化为稳定的营养液。在第一阶段,在微生物电解池 (MEC) 中去除高达 85% 的 COD,将有机化合物中的部分能量 (27-46%) 转化为氢气,并通过防止第二阶段通过反硝化造成的氮损失实现完全氮回收。除了去除 COD 之外,所有尿素都在 MEC 中水解,从而产生富含氨氮和碱度、COD 低的流体。该流体被送入膜曝气生物膜反应器 (MABR),以通过硝化将挥发性和有毒的氨氮转化为非挥发性硝酸盐。生物电化学预处理允许在低于 0.1 mg O 2 L −1 的本体相溶解氧水平下将 MABR 中的所有氮以硝酸盐形式回收。相反,在相同的氮负荷率下向 MABR 直接供给原尿液(省略第一阶段)会因反硝化而导致氮损失(18%)。MEC 和 MABR 的特点是微生物群落非常不同且多样。虽然(严格的)厌氧属,例如 Geobacter(电活性细菌)、Thiopseudomonas(Lentimicrobiaceae 成员)、Alcaligenes 和 Proteiniphilum 在 MEC 中占主导地位,但 MABR 以需氧属为主,包括 Nitrosomonas(已知的铵氧化剂)、Moheibacter 和 Gordonia 。两阶段方法产生了稳定的富含硝酸盐、COD 低的营养液,适用于植物和微藻培养。
先进材料和设备技术在各个领域支撑着我们的生活。它们在智能手机、汽车、机器人和通信功能的信息和通信设备技术中发挥着核心作用。它们通过太阳能电池、可充电电池、功率半导体、磁铁/磁性材料、水和 CO 2 电解池以及分离膜等各种设备和材料为碳中和做出贡献。在医疗保健和医学领域,它们被用于人工微系统,例如针对 COVID-19 病毒的 mRNA 疫苗、用于早期诊断和生物信息监测的高灵敏度传感器设备以及用于预防、诊断和治疗癌症和脑疾病的设备和材料。纳米技术能够在非常小的尺度上观察、控制和处理物质的结构,对于实现这些材料和设备是必不可少的。最近与这一领域有着特别密切联系的世界事件是美国和中国争夺技术霸权而导致的全球供应链不稳定、COVID-19 疫情以及俄罗斯入侵乌克兰。这些世界形势的变化正在破坏“在最合适的地方生产,以提高整体效率”这一全球供应链的前提。作为经济安全最重要的问题,各国都在推行将稀缺资源和供应来源有限的工业产品列入清单、将重要技术恢复到国内生产等政策。冷战结束后持续的全球开放经济运动陷入停滞,民族主义和保护主义的兴起以及经济脱钩即将发生。这样的社会趋势不仅影响着经济领域,也影响着学术界的先进科学研究。国际上对这一领域的另一个重大要求是对可持续发展目标的贡献。特别是,为了在2050年实现碳中和,需要新开发可再生能源利用技术和减少CO 2排放的节能技术、CO 2捕获和利用技术、回收和再利用技术。除了开发这些新技术之外,还需要重新审视以前认为已经建立并优化的生产技术。为了在长期研发的领域取得突破,可能需要从材料和生产工艺的原理层面进行革新,因此这种基础研发非常需要密切的国际合作。在这种竞争与合作并存的困难局面下,日本也在实施双管齐下的政策。在“2050年实现碳中和的绿色增长战略”、“材料创新战略”、“量子技术与创新战略”等国家战略下,各种研发正在蓬勃发展。这些战略的实施是为了应对日本面临的挑战、对国际社会共同目标的贡献、建立经济安全等各个方面。此外,最近特别引人注目的是日本重启先进半导体工艺开发的努力。基于“半导体和数字产业战略”,日本积极投资研究
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.