电能用于驱动由电化学电池组成的电解电池中的非自发氧化还原反应。经常使用通过电解分解化合物的过程,它源于希腊语 lysis,意思是分解。电解池由电解质、两个电极(一个阴极和一个阳极)和其他三个组件组成。通常使用水或其他溶剂来制作电解质,电解质是一种含有溶解离子的溶液。本研究的目的是使用各种电解液、盐水浓度以及燃料电池和电极的集成来测试、分析和构建电解电池。该研究旨在进行实验,并依靠描述性分析来对其进行评估。设计重点是寻找电极(仅限于锌、铜和铝(汽水罐)、不同电解质、燃料电池连接类型和不同浓度盐溶液)的最佳组合,以提供最佳能量输出。根据收集和分析的数据,锌铜电极每电池产生的平均电压为 0.705 V。盐水电解质根据其成本效益产生最有效的结果。当盐溶液浓度为 30% 时,可实现最佳电压输出,燃料电池在串联时性能最佳。使用此参数构建了 20 个燃料电池,可在没有任何负载的情况下产生 14.10 V。当连接到具有 12V 电源的直流照明负载时,电压为 7.57 V,电流为 1.1 A。关键词:电极、电解池、电解、氧化还原反应
作为下一代电池,全稳态电池(ASSB)吸引了广泛的关注。通常,ASSB包括无机固体电解电池,聚合物固体电解电池,复合聚合物/陶瓷固体电解电池等。但是,在Assb的设计和制造中仍然存在令人生畏的挑战。ASSB的最大挑战是接口问题,这导致ASB的容量,骑自行车和速率表现远低于传统LIB的能力。通常,界面问题非常复杂,可以在[24]中找到详细的讨论。图2(b)显示了ASSB的典型接口问题[25]。通常,空间电荷层和界面层会导致较大的界面阻抗,从而降低反应动力学并限制电池的性能。此外,充电和放电将进一步加剧接口问题。在
作为下一代电池,全稳态电池(ASSB)吸引了广泛的关注。通常,ASSB包括无机固体电解电池,聚合物固体电解电池,复合聚合物/陶瓷固体电解电池等。但是,在Assb的设计和制造中仍然存在令人生畏的挑战。ASSB的最大挑战是接口问题,这导致ASB的容量,骑自行车和速率表现远低于传统LIB的能力。通常,界面问题非常复杂,可以在[24]中找到详细的讨论。图2(b)显示了ASSB的典型接口问题[25]。通常,空间电荷层和界面层会导致较大的界面阻抗,从而降低反应动力学并限制电池的性能。此外,充电和放电将进一步加剧接口问题。在
固体氧化物燃料电池 (SOFC) 和电解电池 (SOEC) 是前景光明的能源转换装置,在此基础上可以开发绿色氢能技术,以支持向无碳未来的过渡。与氧传导电池相比,质子陶瓷燃料电池 (PCFC) 和电解电池 (PCEC) 的工作温度可以降低几百度(低至 400 – 700 C 的低温和中温范围),同时保持高性能和高效率。这是由于质子传导电解质的电荷载体具有独特的特性。然而,尽管取得了出色的实验室规模性能,但与市售的 SOFC 和 SOEC 相比,PCFC 和 PCEC 的工业规模前景仍然不明朗,至少在不久的将来如此。在这篇评论中,我们揭示了技术发展延迟的原因,需要解决这些原因才能将基础发现转化为工业过程。还强调了已发现问题的可能解决方案。
降低通过敬畏的电解H 2的生产成本(今天总计每千克5.50 h)4需要通过降低电解电池超潜在的同时保留Ni基电催化剂的典型的高电催化剂耐用性来发展更有效的电极。商业成熟度,该电解允许在2 a cm 2以上进行持续操作,但使用大量昂贵且稀有的铂金属金属(PGM),尤其是PT和IR。在过去的十年中,出现了一种新颖的技术,将高生产率PEMWE与使用非关键资源相结合的新技术已经出现,即一种新型的电解质类,即碱性膜水电油(AMWES),将阴离子交换膜用作分离器,并可以用PGM-FRE-FRE-FRE-FEM-FREA cATALYSTS进行操作,5使技术和
随着能源的加速,需要开发高效的能量转换技术。我们的小组专注于高温运行能量转化设备,并集中在固体氧化物燃料电池(SOFC)上,这些燃料电池(SOFC)以高效的方式将各种燃料(例如化石燃料和生物量)转化为电能,以及固体氧化物电解电池(SOEC),这些电池(SOEC),这些电池(SOEC),这些电池(SOEC)将造成的能量添加到较高的能量中,添加了高效果,添加了高级效果,高效率。特别是,在SOFC提高耐用性和可靠性的努力中,我们在与公司和大学合作中作为公共研究机构发挥了重要作用。将来,我们将通过对更高效的能源转换设备进行全面的研究和发展,包括开发用于固态离子学现象的评估技术,从而为低碳社会实现。
通过水电解向氢的转化为氢消耗大量淡水,而无传统水源的有效使用可以增强能源和水系统的可靠性和弹性。在这项研究中,我们设计了一个固体氧化电解电池(SOEC)系统,该系统是一种在高温下进行水电解的不断发展的氢生产技术。SOEC使用烟气产生的蒸汽作为其原料,并与许多发电机单元完全集成,包括煤炭和天然气燃烧发电厂作为其能量原料。虽然全球从化石燃料迅速转移,但将其资产纳入该技术有助于限制搁浅资产的风险和未来损失,并降低新技术的投资成本。但是,关于未来成本和效率提升的高资本支出和疑问是投资水电解的障碍。进行了这种详细的氢气和技术经济分析的详细升级成本,以显示这种新技术的生存能力和环境影响。结果表明,系统的SOEC效率为97.4%和56.3%,作为系统的热到氢效率,每天的氢产生242,400千克,$ 2.9-3.5/kg H 2。估计值在这项技术和技术经济挑战中表现出积极的增益前景。
微生物电化学反应可用于合成高附加值化学品和固定CO2等。[7–9] 双向电子转移通过直接电子转移、纳米线转移和穿梭转移等多种自适应途径发生,表明电子转移效率是影响微生物电化学活性的关键因素。[2,5,10] 随着外电极可以有效地作为电子受体或供体被发现,人们对细菌与电极之间双向电子交换的深入探索已经在各种生物电化学系统中创造了新技术,例如微生物燃料电池(MFC)、微生物电解电池(MEC)、微生物海水淡化电池(MDC)和微生物电合成(MES))。 [1,11] 利用生物电化学系统,产电细菌可以革命性地从有机废物中产生可再生生物电,合成高价值化学品和生物燃料,或执行许多其他对环境重要的功能,如生物修复、海水淡化和生物传感。特别是,MFC 中细菌细胞外电子转移 (EET) 过程的利用已引起广泛关注,可替代我们已有 100 年历史的能源密集型有氧技术,成为废水处理方法的替代品。[12–14] 虽然许多可再生、碳中性的能源,如风能、太阳能、地热能和核能,已经开始取代化石燃料,以紧急缓解能源危机和全球变暖,但 MFC 可以更有效地产生清洁电力,同时去除废水中的污染物。为了解决这些紧迫的社会问题,人们对MFC进行了大量且持续的研究,主要集中在大规模系统的开发和运行上。[12,15] 扩大MFC的规模对于应对迫在眉睫的能源-气候危机至关重要。尽管过去几十年来MFC取得了长足的发展和性能提升,但其规模化和商业化仍然难以实现。[12–16] 最关键的挑战是其性能极低,且性能不会随着尺寸的增大而成比例提高。[16–19] 许多研究已经探索了通过纳米技术、细菌基因工程和材料创新来提高MFC性能的方法。[13,20,21] 然而,它们能否经济高效且稳健地集成到大规模应用中还值得怀疑。尽管模块化堆叠
近几十年来,广泛使用化石燃料已导致全球变暖,增加了对环境保护的压力。固体氧化物细胞(SOC)是有希望的电化学能量转换和在高温(600 - 1,000°C)下使用的存储装置。SOC可以在燃料电池模式(固体氧化物燃料电池或SOFCS模式)下运行,在那里它们通过氢或其他能源资源(例如碳氢化合物,CO等)产生电力,也可以在电解模式(固体氧化物电解电池或SOEC模式)中进行操作,从而在其中产生Hygas或Syngas等,从H 2 O和CO供电,并配备H 2 O和Co 2 O和Co Electrictitions Electrictitions Electrictity。当在SOFC和SOEC模式下操作时,它们可以称为可逆的氧化物细胞或RSOC。从根本上讲,已经开发了两种类型的SOC,即管状和刨床设计。管状型SOFC具有长期的稳定性,而平面型SOFC与管状型SOFC相比具有高功率密度,该型SOFC显示出良好的特性,例如高体积功率密度和低电阻。XI等。 估计平面型SOFC内的各种物理参数。 详细构建了该模型,包括气流,传热,传质和电化学反应。 因此,平面型SOFC的性能受结构参数的影响(Xi等人 )。 此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。 XI等。 )。 Thornton等。 )。XI等。估计平面型SOFC内的各种物理参数。详细构建了该模型,包括气流,传热,传质和电化学反应。因此,平面型SOFC的性能受结构参数的影响(Xi等人)。此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。XI等。 )。 Thornton等。 )。XI等。)。Thornton等。)。它在高温(500 - 900°C)下运行,其优点是它可以用宽型燃料(包括氢,甲烷,葡萄球菌,乙醇,沼气等)运行。通过热量和发电(CHP)的结合,可以最大程度地提高80%以上的效率。开发了具有100 kW发电的生物量气体(BG)-SOFC-CHP系统。结果显示出显着的节能效果。这项工作的主要目标是分析与传统能源系统相比的CHP系统的优势(Xi等人SOFC的工作温度会影响细胞中发生的物理和化学过程。这些过程也受到微观结构的影响。计算了表征SOFC阴极的微观结构的阻抗数据。他们通过使用电化学阻抗光谱(EIS)数据发现了SOFC阴极微观结构的有效曲折(Thornton等人在电极的催化活性方面,高温操作有利于使用非私致金属催化剂。Xia等。 在Ni-CEO 2材料上进行了理论计算和实验。 镍的存在增强了H 2吸附,并降低了的能量屏障Xia等。在Ni-CEO 2材料上进行了理论计算和实验。镍的存在增强了H 2吸附,并降低了