hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要Via地面(GND)结构构成设计高性能印刷电路板(PCB)的最有用的元素之一。与VIA的电气连接成为实施各种电子函数的关键常规解决方案。但是,到目前为止,VIA从未用于设计负组延迟(NGD)电路。为了回答这个好奇的问题,本文介绍了有关使用Via Ground的低通NGD功能设计可行性的原始研究。在拓扑描述之后,建立了VIA参数功能的NGD分析。制定了允许合成NGD函数指定功能的通过功能的设计方程式。与商业工具之间的计算和模拟之间的比较验证了开发的NGD理论。正如预期的那样,在一百毫米截止频率上以百秒秒为单位的ngd值在理论模型和仿真之间具有良好的一致性获得。此外,时域分析了通过NGD结构的确认,可以在任意波形输入信号的时间吸收时生成输出信号,显示有限的带宽。
在工业环境中,生产高质量的印刷电路板(PCB)对于确保可靠的产品到达最终客户至关重要[1]至关重要。质量控制部门旨在根据预先建立的标准确保和执行工业过程的每个阶段的合规性。部门负责通过采样来对产品进行功能测试和视觉检查,这是一项经常手动的任务,依赖于员工的重点和解释。这可能会导致人类错误或未发现的缺陷,这些缺陷落在抽样之外[2]。行业4.0技术的集成,例如物联网(IoT),人工智能(AI)和云计算,在优化和确保过程中的可靠性方面起着重要作用[3]。机器学习模型处理和分析大量数据和识别模式的技术能力使得能够准确区分有缺陷的和非缺陷的PCB,检测到未安装的或错误安装的组件,甚至识别痕迹中的缺陷,例如开路通行器或短路或短路。这项技术使基于样本的检查不必要,因为可以单独分析每个生产的董事会。这项工作旨在调查不同的卷积神经网络架构,以表征工业过程中PCB中的组装缺陷。
图 3. A) 松香油的参考光谱(红色,顶部)及其库匹配(绿色,底部);B) 两个位置的图像,有明显不一致之处;C) 化学图表示收集的光谱与松香油的参考光谱之间的相似性。(红色高相关性和蓝色低相关性)
本论文由 MavMatrix 机械与航空航天工程系免费提供给您,供您开放访问。它已被 MavMatrix 的授权管理员接受并纳入机械与航空航天工程论文。如需更多信息,请联系 leah.mccurdy@uta.edu、erica.rousseau@uta.edu、vanessa.garrett@uta.edu。
人类的行为,记忆,情绪,学习能力,认知功能障碍以及各种形式的痴呆症在大脑内的通信途径上显着铰接,在大脑的通信途径中,细胞细胞信号传导在正常生理和疾病发病机理中都起着关键作用。响应于在不同的大脑区域中测量不同细胞种群的电活动的持续挑战,我们设计并测试了与微电极阵列集成的多层打印电路板(PCB)的两个版本。这种创新的PCB,其带有传导孔,经过两个或多个相邻的层和电极结构,可以测量不同层的细胞组之间的信号。每层代表具有特定细胞类型的不同大脑区域,通过导电孔与相邻层通信。将微流体纳入PCB可以增强其功能性药物筛查的实用性,最终通过更有效的筛查方法来减少动物使用情况并改善患者的结果。
要求标题:高级打印电路板和电子基板关键部门:微电子背景:印刷电路板(PCB)和高级包装底物是较大的微电子生态系统中的重要组件,是电路电路和集成电路之间复杂互连的骨干的骨干(IC)。自世纪之交以来,美国PCB行业的全球市场份额急剧下降,国内能力大大落后于近亲对手。因此,由于高混合,低量的国内PCB制造能力的严重不足和设计复杂性的增加,美国国防工业基础(DIB)在履行微电子订单方面面临严重的积压。同时,对于下一代美国国防系统,陆上对先进的底物制造或设计的访问很少。这项增强的白皮书的呼吁重点介绍了与高级PCB和电子底物的制造,材料和可靠性研究有关的几项关键计划。制造能力扩展和投资优先级(MCEIP)寻求解决下面描述的一个或多个技术主题领域的解决方案。期望的目标:国防部的高级PCB和电子底物计划是在关键战略领域投资原型项目,以增强高混合,低量的国内能力。提议的解决方案必须至少是技术准备水平(TRL)6和/或制造准备水平(MRL)为5。增强的白皮书应在以下技术要求的一个或多个方面保持一致:
图 3 (a) 基于皱纹石墨烯-AuNPs 混合结构的光电探测器集成在隐形眼镜上及其光响应。[31] 经皇家化学学会许可转载。(b) 当激光点照射电极之间的 rGO 区域时,会发生光伏响应,并且与激光点的位置有关。[32] 经 Springer Nature Limited 许可转载。(c) 用半导体量子点光电探测器敏化的柔性石墨烯的摄影图像和示意图。(d) 基于光电探测器的反射模式和透射模式 PPG 的光电容积图 (PPG) 的示意图和 (e) 摄影图像。(f) 光电探测器透射和反射模式的归一化 PPG 结果。[36] 经美国科学促进会许可转载。 (g)由五苯有机半导体、金纳米粒子(AuNPs)构成的柔性石墨烯光电探测器的示意图和照片图像。(h)石墨烯光电探测器的存储性能。[33] 经美国化学学会许可转载,版权所有。(i)柔性石墨烯/钙钛矿光电探测器阵列(24×24像素)的示意图和照片图像。(j)用于颜色辨别的柔性石墨烯/钙钛矿光电探测器图像传感器的示意图和相应的输出图像。[34] 经中国科学出版社许可转载。
与传统封装技术相比,将功率半导体器件嵌入印刷电路板 (PCB) 有几个好处。将半导体芯片集成到电路板中可减小转换器尺寸。这会使电流环路变短,从而降低互连电阻和寄生电感。由于传导和开关损耗降低,这两者都有助于提高系统级效率。此外,由于热阻低,使用厚铜基板可以有效散热。因此,十多年来,PCB 嵌入在电力电子界受到了广泛关注。本文旨在全面回顾该主题的科学文献,从基本制造技术到用于电气和热测试的模块或系统级演示器,再到可靠性研究。性能指标,例如换向环路电感 L σ、与芯片面积无关的热阻 R th × A chip ,可以比较不同的方法并与传统功率模块进行基准测试。一些出版物报告称,杂散电感低于 1 nH,并且与芯片面积无关的热阻在 20 ... 30 mm 2 K/W 范围内。