实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
摘要 - 基于注意力的变压器的广泛采用和显着的计算资源成本,例如,视觉传输者和大型语言模型,驱动了对有效的硬件加速器的需求。尽管通常使用了电子加速器,但由于其高能量效率和超快速处理速度,人们对将光子学作为替代技术越来越兴趣。光子加速器已经证明了卷积神经网络(CNN)工作负载的有希望的结果,这些工作主要依赖重量 - 静态线性操作。但是,在有效地支持基于注意力的变压器体系结构方面,它们会遇到挑战,从而提出了有关光子学对高级机器学习任务的适用性的问题。主要障碍在于其不具体率在处理变压器固有的独特工作负载,即动态和全范围张量乘法。在这项工作中,我们提出了闪电转换器,第一个光功率,高性能和能量良好的光子变压器加速器。为了克服现有的光子张量核心设计的基本限制,我们引入了一种新型的动态动态光子张量核心DPTC,由基于干扰的光学矢量点发动机组成,支持高度平行,动态和全范围二元组乘积。此外,我们设计了一个专用的加速器,该加速器将我们的新型光子计算核与光子互连集成在一起,用于核心数据间广播,完全释放了光学功能。全面的评估表明,闪电转变器成就> 2。6×能量和> 12×延迟降低,并且与电子变压器加速器相比,能量成本最低,能量延迟产品低2至3个数量级,同时维持数字可靠的精度。我们的工作强调了光子学对于有效的硬件加速器的巨大潜力,尤其是用于高级机器学习工作负载,例如诸如变形金刚的大型语言模型(LLM)。我们的实施可在https://github.com/zhuhanqing/lightening-transformer上获得。
该收费方式原则上由两部分组成:固定千瓦费用和计量千瓦时费用。 除了电网能够允许电力双向流动之外,新推出的发电侧过境收费系统将要求发电厂承担一些与电力传输和分配相关的成本,而这些成本迄今为止一直由需求方独自承担。 基于此观点,并假设相当于需求侧正向潮流 kW 的输配电设施通常可以处理发电厂侧的反向潮流 kW,如果需求侧和发电厂(反向潮流)位于同一点,则发电厂将被要求承担发电厂侧反向潮流 kW 超过需求侧正向潮流 kW 的部分(千瓦费用)。 因此,应缴纳电费的电量,相当于委托合同中生产方逆潮流电量超过需求方电量的部分。 今后,核心电网的设施组成,将以不仅考虑合同电量,还考虑设施使用情况(kWh)的成本效益评估为依据,kWh部分由发电厂承担(kWh费用)。 由于计量应缴纳电费的发电量的仪表的安装方式是,即使有现场消费,仪表也会显示不含现场消费量的数值,因此该仪表计量值将被视为应缴纳电费的电量。 考虑到使用抽水蓄能发电或蓄电池时发电厂的费用负担,出于与其他电源 4 的公平考虑,自然资源和能源局委员会决定免除抽水蓄能发电和蓄电池的千瓦时费用(有关与发电设施一起安装的蓄电池的费用处理,请参阅以下问答中的 Q5)。问答
石英底物。为了提供有关此差异的详细讨论,即σyy与κxx的比率,即σyy /κxx < / div < / div < / div < / div>
本研究はJSPS 科研费(JP 21H05021, JP 17H06227)、JST CREST(JPMJCR18J1)、JST SICORP
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
能源转型正在顺利进行,能源供应和能源使用在各种应用中变得更加可持续。能源转型的下一步是使供需更加可持续。实现这一目标主要有两种方式:在可再生能源发电量大时使用电力和利用能源储存。在热能领域,这可以通过将电能转化为热能(电转热,P2H)并储存热量以便以后充分利用来实现。在本研究中,我们重点关注使用 P2H 和热能储存使热能网络更加可持续的机会。对于 P2H,我们考虑了两种技术:热泵和电热水器。对于热能储存,我们研究了储罐储存(TTES)、地下孤立孔储存(PTES)和地下蓄水层高温储存(HT-ATES)。图 1 说明了这一概念。这项研究的目的是通过深入了解 P2H 和储存(P2H+S)的潜力和发展,将电力和热能的世界联系起来。在这项研究中,我们定义了商业案例并确定了 P2H+S 的技术潜力。此外,我们通过以综合方式对热网中的发电和来源进行建模,绘制了对电力系统的影响。最后,我们分析了障碍,并根据这一分析制定了政策建议,以使 P2H 和热存储正常运行。
短期灵活性,用于应对可再生能源的自然变化和预测误差,从几毫秒到几小时不等。 长期灵活性,用于应对持续数天到数周的风能和太阳能供应不足的情况。
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。