自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
与与每个成员的琐碎解决方案相比,与每个成员进行琐碎的解决方案相比,多重电键封装机制(MKEM)提供了可扩展的解决方案,并在带宽和计算成本中节省了可节省的解决方案。MKEM上的所有先前作品仅限于经典假设,尽管已知某些通用构造,但它们都需要大多数量词后方案不共享的特定属性。在这项工作中,我们首先提供了一种简单而有效的MKEM的通用结构,可以通过多功能假设(包括量词后的假设)进行实例化。We then study these mKEM instantiations at a practical level using 8 post-quantum KEM s (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that compared to the trivial solution, our mKEM offers savings of at least one order of magnitude in the bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35.此外,我们表明,通过将MKEM与MLS使用的TreeKem协议(用于安全组消息传递的IETF草稿)相结合 - 我们获得了显着的带宽节省。
银行业务)依靠 GPS 的 PNT 来为交易添加时间戳并进行网络同步。受证券交易委员会监管的金融服务机构在某些应用中使用 GPS,但通常也会使用时钟套件来维护自己的内部时间“纪元”,以创建带时间戳的事件记录、光纤、微波链路等。虽然它们可能因此不太容易受到干扰,但涉及的巨额资金使它们成为恶意 PNT 干扰的更诱人目标。• 数字广播和陆地移动无线电 – GPS 的精确计时用于大大增加数字无线电和电视广播以及移动无线电网络中固定频谱的使用,而早期的模拟系统则无法做到这一点。例如,安全、急救人员、军队和其他人员使用的模拟形式的手持和移动无线电只能支持一个发射器同时在线,并且只能在一个频率上进行一次对话。用户必须小心地按下无线电键进行通话,并说“结束”以表示通话已完成,然后才能释放键并释放频率进行回复。数字系统利用 GPS 的精确时间信号将对话分成数据包,这样就可以在同一频率上同时进行多个对话。
在本项目中,我们研究了在半活性自适应结构中使用可变刚度/可变强度结构元素的使用,采用双重方法来实现概率。在由NFP 62资助的项目中,我们研究了介电材料,以实施多层结构的静电层压,在一个并行项目中,由ETH的结构技术中心资助,我们已经确定了上述结构概念,这些结构概念可以利用上述元素来实现新的和有用的功能,以实现新的和有用的结构,并将其与特定的机翼结构相关联。这两个平行项目的努力是从相当早的阶段进行了协调的,旨在在高性能,轻质结构的结构演示者中实施电键粘合层压板(EBL的目的)。本项目的第一个成就是对与当前应用相关的聚合物膜的性质的详细研究:介电常数,介电强度和体积电阻率。这第一步是决定性地研究介电材料的框架,以便为其用于EBL应用的资格,这是决定性的。也很快就清楚了,也从对介电材料进行的研究也很快,即使在该项目的范围中包括材料合成,也不太可能实现介电强度和介电常数的同时增加。这些发现的相关性远远超出了用于EBL应用的电介质的优化。我们的注意力很快就针对对分层介质的调查,基于溶液的调查,通过其他小组的观察来证实,由其他群体进行的观察结果证实,由多层组成的电介质会提供介电强度的介电功能,而不是在材料和应有的材料中造成的材料不可避免地会导致一个不可避免的介绍性,并且是否会增加材料的范围,并且应有的可能性 - 应有的可能性,而应有的可能性,那么它是应有的,如果是应有的含量,那么它是不可避免的。用于制备多层介电。关于材料有效介电特性的问题很快就会出现,并且在项目的第一阶段获得的高近DC领域的介电和绝缘材料的知识清楚地表明,该材料的教科书近似是无限量电阻的完美介电性,这将无法适当地表示问题。因此,开发并通过实验验证了多层膜的介电响应的模型,该模型也考虑了组件的有限体积抵抗力。开发的分析模型代表了优化高能介电膜以不同频率应用的高能介电膜的基础。高压直流电网的未来开发将需要开发可靠的固体绝缘材料。多层电介质可以很好地代表一类有趣的介电和绝缘元素。此类投资从未在此细节上进行。结果也相对于此外,显然需要有效地撞击多层绝缘层层上静电场层的理解,这显然是必要的,以了解导致高场上此类材料系统失败的机制。在项目的最后一部分中,详细研究了EBL元素的机械性能,该元素与与项目结构分支的合作框架中所设想的结构应用有关的负载案例进行了详细研究。