引言激光修剪是指使用激光控制电子电路元件的操作参数的制造过程。最常见的方法是细微调整电阻组件,基本过程方法包括跌落切割,边缘切割,L-CUT,等。电阻取决于物体的几何特性,宽度和厚度(高度)以及目标材料的独特电阻,这是一种被动修剪,通过改变对象的几何特性来控制目标的电阻值[1,2,3,4]。unicl(产品名称)用作修剪的热抗体,是一种经济友好的热源,由于非常清洁和出色的能量效率和快速温度的升高,因此具有出色的反应。unicl的IR加热器是通过使用面具的打印过程制造的,核心热源组件IR加热器使用不锈钢作为基板,最重要的是化学材料(Exouteric source),绝缘层和绝缘层和一个合并的金属和无机材料。它具有一种结构,其中使用丝网印刷形成电线,并用厚膜形成。图1显示了各种加热板的示例。在这项研究中,我们将解释激光修剪过程的开发,这些过程可以通过将激光处理方法应用于校正IR加热器温度特性的电阻特性的变化来同时提高产品的产量和精度。
摘要:本文介绍了一种新型环境友好型有机抑制剂的腐蚀性特性。,在相关参数的各种条件下,研究了模拟混凝土孔溶液(SP)中钢的电化学特性(SPS),包括抑制剂和NaCl,NaCl,pH值和温度的浓度。通过电化学阻抗光谱(EIS),电位型动力学极化和钢的重量损失来表征材料的抑制效率。结果揭示了钢对抑制剂的耐腐蚀性有显着改善。在4%的抑制剂浓度下达到了89.07%的最大电阻值。此外,新的有机抑制剂在不同NaCl浓度下对钢表现出良好的腐蚀能力。其抑制效率分别为2、3.5和5%的NaCl浓度分别为65.62、80.06和66.30%。另一方面,发现碱性环境有利于增强的预防腐蚀作用,并且在这项工作中观察到了11.3的最佳pH值。此外,不同温度下的抑制效率显示为25> 35> 40> 40> 20> 30℃,最大值为25°C时为81.32%。上述结果表明,新的有机材料在钢制腐蚀条件下具有较高的生态友好耐用性和长期耐用性抑制剂的耐用性抑制剂。
摘要:本文重点介绍一种新型铜镍厚膜电阻浆料,该浆料专为实现低欧姆功率电阻而设计和实验开发。这种铜镍浆料设计用于厚印刷铜导体,与传统的钌基厚膜电阻浆料相比,可在氮气保护气氛中烧结。铜镍浆料由铜和镍微粒、玻璃粘合剂颗粒和有机溶剂组合制成,并针对在氮气气氛中烧结进行了优化。本文详细介绍了铜镍浆料的成分及其热性能(通过同步热分析验证)、干燥和烧结铜镍膜的形态描述以及最终印刷电阻的电参数。通过电子显微镜和元素分布分析证明,铜和镍微粒在烧结过程中扩散在一起并形成均匀的铜镍合金膜。该薄膜具有低电阻温度系数 ± 45 × 0 − 6 K − 1 和低薄层电阻值 45 m Ω /square。经验证,配制的铜镍浆料可氮烧,并且与厚印刷铜浆料具有良好的兼容性。这种组合允许实现直接集成低欧姆电阻器的功率基板。
摘要:今天,由于电导率高,石墨烯装载的纺织品被认为是有希望的智能服装。在这项研究中,我们报告了使用一步的气溶胶喷雾热解(ASP)工艺及其在智能纺织品上的潜在应用,该研究降低了用石墨烯(GO)胶体溶液(GO)制造的纯棉织物(R-GO)。ASP过程是有利的,因为它易于实现,并且可以应用于连续处理。更多,此过程从未应用于将R-GO沉积在纯棉布上。田间发射 - 扫描显微镜(Fe-SEM)观察,傅立叶变换红外(FT-IR)分析,拉曼光谱,X射线衍射(XRD)分析(XRD)分析和紫外线透射率(UVT)用于评估R-Go胶体的材料特性。还测量了电阻以评估样品的电导率。结果表明,R-GO被用在样品上迅速降低,并且具有最高电导率的样品显示出2.27kΩ /sq的电阻值。综上所述,结果表明,ASP方法表现出高电位,可有效沉积R-GO在棉布织物标本上,并且是开发基于导电棉的智能服装的前景。因此,这项研究也有意义,因为可以通过将R-GO沉积在纯棉织物上,因此可以新应用ASP工艺。
虽然在前面的分析中,减法放大器电路被视为理想电路,但实际上它有自己的误差,这些误差是由有限环路增益和电阻值的微小差异引起的。结果是 (3) 中的误差项被修改,但总体误差是相似的,由两个小量的乘积组成,每个量 <10-3。图 I(a) 的电路也可用于分析整个仪器的动态稳定性。两个反馈环路(第一个由 A1、RS4 和 RS3 组成,第二个涉及 A2、A3、RS2 和 RS1)都必须稳定。应该注意的是,这两个环路在反馈性能方面不会相互影响。A1 的输出作为等效受控源添加到第二个环路中。第二个环路更难稳定,因为它包含两个放大器,使关键高频区域的相移加倍。需要仔细补偿才能产生稳定的电路。通过在 Ai 中将原始函数与 A3 的信号添加函数相结合,可以简化图 I(a) 中的电路,如图 I(b) 所示。A2 的输出通过电阻 R~4 连接到 Ai 的求和点。该电阻的标称值与 RS4' 相同。这会将 A2 的输出直接添加到 A 1 的输出,而无需任何放大或衰减。R~4 的不同值将增加或减少包含 A2 的环路的增益。先前推导的方程同样适用于
抽象涂层是用于不同目的的纺织行业中广泛的技术,主要是在着色和功能表面上。石墨烯通常使用涂料技术应用于织物,以提供具有导热性或电导率等特性的织物。所有编织织物的结构都有峰值和山谷,由翘曲和纬线交织在一起。在散布石墨烯涂层时,将糊剂放在织物的间隙中,并且只有在涂层的高度足以连接沉积的不同区域时才产生导电颗粒之间的连接。本文分析了三种类型的缎面编织,三个交错系数(0.4、0.25、0.17)和两组纬纱(20和71.43 Tex)。对于1.5毫米的叶片间隙,纬纱计数的样品的电阻为20 tex且交错系数为0.4为534.33Ω,而对于IC = 0.25的0.25电阻高36.8%,对于IC = 0.17,此参数增加了249.3%。对于具有71.43的纬纱计数的样品,IC = 0.40的样品的电阻为1053Ω,对于IC = 0.25,此值升至33.9%,而对于IC = 0.17,电阻值总计增加了78.9%。对于连续性至关重要的涂层,并且需要保护需要保护外部因素的物质,这一发现可能是感兴趣的,对于需要保护的物质,可以将具有深层间隙的织物设计用于容纳所述产品。
您需要登录或创建帐户才能获得或声明访问权限。可用主题包括: 与二极管相关的额外主题 与 JFET 和 GaAs 器件和电路相关的额外主题 与有用的晶体管配对相关的额外主题 与输出级和功率放大器相关的额外主题 与内部运算放大器电路相关的额外主题 与滤波器和调谐放大器相关的额外主题 与波形生成和整形相关的额外主题 与双极数字集成电路相关的额外主题 与 MOS 数字集成电路相关的额外主题 要访问内容或兑换资源,用户必须登录或创建帐户。所提供的文本涵盖了与电子和数字设计相关的各种主题,包括双极结型晶体管 (BJT)、MOS 场效应晶体管 (MOSFET)、放大器、运算放大器电路、CMOS 数字逻辑电路和 VLSI 制造技术。重点关注领域包括集成电路放大器的构建模块、差分和多级放大器、输出级和功率放大器、运算放大器电路、CMOS 数字逻辑电路以及数字设计原理(例如功率、速度和面积)。文本还涉及 SPICE 设备模型、仿真示例和双端口网络参数。此外,它还涵盖了采用 CMOS 和双极工艺制造的 IC 设备的标准电阻值、单位前缀、典型参数值,并提供了所选问题的答案。
・耐振 Unireg 基本结构模块的原型以及励磁环境下的发电运行验证(正弦波 33 Hz,最大加速度 5 G)(励磁环境条件为 JIS 汽车零部件的耐振要求)・模块功率在上述振动环境下的发电耐久性为100小时以上 ・抗振模块结构及相关外围技术的知识产权申请 此外,从2017年度起,上述目标2决定验证激励环境(33和67 Hz正弦波,最大加速度5和10 G)下的发电操作。 为了实现这些目标,我们将采取以下举措。 ① 提高环境负荷低的Mg 2 Si热电发电材料的热耐久性 申请人之前的努力表明,Mg 2 Si材料本身即使在600℃下3000小时或更长时间后也能保持发电元件的电阻值。气氛稳定。这项委托工作将确保模块结构的耐用性,这在将其引入热电池时是必要的。 ②开发针对发电优化的高耐用新型Unireg结构模块在本次委托工作中,Mg 2 Si热电材料具有基础热电发电能力高、热电材料中重量最轻、环境影响低等特点。为此,我们将采用unireg型热电发电模块结构,该结构只能由n型半导体Mg 2 Si构成。 ③ 在发电环境下使用振动试验机评价接近实际环境的发电特性汽车零部件一般要求水平的振动环境(JIS所示的汽车零部件耐振动环境:正弦波加速度5G、33Hz) )保证发电模块的耐用性。 B.热电池DC-DC功率变换器实际应用的基础技术本项目的目标如下。 目标1:热电发电模块专用电容堆积式DC-DC转换器的转换效率达到80%
I 2 C 通信协议 HMC6352 作为从设备通过双线 I 2 C 总线系统进行通信。HMC6352 使用分层协议,接口协议由 I 2 C 总线规范定义,下层命令协议由 Honeywell 定义。数据速率为 I 2 C 总线规范 2.1 中定义的标准模式 100kbps 速率。总线位格式为 8 位数据/地址发送和 1 位确认位。数据字节(有效负载)的格式应为区分大小写的 ASCII 字符或二进制数据(发送给 HMC6352 从设备)和返回的二进制数据。负二进制值将采用二进制补码形式。默认(工厂)HMC6352 7 位从属地址为 42(十六进制)用于写入操作,或 43(十六进制)用于读取操作。HMC6352 串行时钟 (SCL) 和串行数据 (SDA) 线没有内部上拉电阻,并且需要主设备(通常是主机微处理器)和 HMC6352 之间的电阻上拉 (Rp)。建议在标称 3.0 伏电源电压下使用约 10k 欧姆的上拉电阻值。可以使用 I 2 C 总线规范 2.1 中定义的其他值。本总线规范中的 SCL 和 SDA 线可以连接到多台设备。总线可以是单个主设备到多个从设备,也可以是多个主设备配置。所有数据传输均由负责生成时钟信号的主设备发起,数据传输长度为 8 位。所有设备均由 I 2 C 的唯一 7 位地址寻址。每次 8 位传输后,主设备都会生成第 9 个时钟脉冲,并释放 SDA 线。接收设备(寻址的从设备)将拉低 SDA 线以确认 (ACK) 传输成功,或将 SDA 保持为高以否定确认 (NACK)。根据 I 2 C 规范,SDA 线中的所有转换都必须在 SCL 为低时发生。此要求导致 SCL 为高时与 SDA 转换相关的总线上出现两个独特条件。主设备将 SDA 线拉低而 SCL 线为高表示启动 (S) 条件,而停止 (P) 条件是将 SDA 线拉高而 SCL 线为高。I 2 C 协议还允许重启条件,其中主设备发出第二个启动条件而不发出停止条件。所有总线事务都以主设备发出启动序列开始,然后是从设备地址字节。地址字节包含从机地址;高 7 位(bits7-1)和最低有效位(LSb)。
自 1990 年以来,电阻尼特的表示一直基于二维电子态中发生的 QHE 的整数量化电阻平台。这些量化的电阻值为 RHU) = R'(.,JO/i,其中 R H 是量化的霍尔平台电阻 RK。!lQ 是 1990 年推荐的冯·克利青常数值,i 是整数量子数 [1]。在 1980 年发现 QHE 后的最初几年里,Si-MOSFET 和半导体异质结构(最常见的是 GaAs/Al,Ga(1)As)被用于计量表征和比较 [2-4],最近,几家国家计量研究所已经开发和改进了生长半导体 QHE 器件的配方,适用于在相对较高的电流和弱磁场下进行精确的电阻计量 [5, 6],因此该标准更容易获得并且在计量上更有用。11 不是一个简单的过程来生产在量子水平上经过良好量化的器件在源漏(-D)电流为 20 μJ 至 100 μJ 且温度为 T2:14 μJ 时,i = 2 平台在相对较低的磁通量(8 < 9 T)下工作。这要求 GaAs/AlxGa(I-x)As 异质结构中的材料成分难以复制,从而通过杂质故意降低电子迁移率以增加平台宽度,同时保持相对较高的载流子浓度 ['1]。此外,金属触点必须扩散到异质结构的器件层中,并且通常很难使用现代光刻技术获得多个高导电触点。自从使用微机械解理技术 [7] 发现石墨烯以来,已经开发出几种其他相对简单的方法来生产表现出 QHE 平台的碳基 2DEG(二维电子气)器件。单层石墨烯中独特的电子态产生了一些对基础物理来说最重要的特性,其中单粒子能带结构使电子和π都具有相对论狄拉克费米子的特性,例如,最低的Landa能级之间的间隔非常大。对于一些单层石墨烯器件,这有助于扩大i = 2 QHE平台的o(钉扎)[8, 9],并可能导致器件在比传统半导体QHE器件高得多的温度、更高的电流或更低的场下实现良好的量化,以进行精密计量。此外,在暴露表面上直接制造电极允许在各种配置中进行电子传输测量。与异质结构器件(其中2DEG埋在半导体内部)不同,石墨烯器件中的导电通道可以位于衬底的表面上,因此可以使用表面科学技术对其进行微观扫描和表征。通过使用原子力显微镜(AFM)、低能电子显微镜(LEEM)[10]、扫描隧道显微镜/光谱(STM/STS)[11J和拉曼光谱,石墨烯器件可以收集石墨烯中异常QHE状态下详细形态和微观电子结构之间关系的数据。
