摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。
各种几何图形已完成并注入 PDK 模型卡。电阻器: 测量了 4K 下的薄层电阻 (SR)。 SG13G2 的模型已重新使用,并更新了 SR。
知识与理解 1.什么是神经元?它们如何交换信息?2.忆阻器与普通电阻器有何不同?3.Pavel 的团队采取了哪些步骤来开发和测试新颖的
< 100 活跃 100-1000 1000- >100000 超过 1 个设备活跃 100000 个活跃 百万个设备活跃 设备活跃 设备设备集成电阻器、二极管和 BJT
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
• 用 24 Vdc 为端子 11 (+) 和 12 (-) 上的数字中继器供电,观察绿色 LED 灯是否亮起。 • 将 S1 键置于位置 II,将 S3 键置于位置 I,如图 32 所示。 • 激活传感器并通过黄色 LED 验证负载通电。 • 用电压表测量电阻上的电压,该电压必须介于 20 到 24V 之间。 • 停用传感器并验证输出停用及其黄色 LED。 • 测试缺陷检测,将两根传感器线短路,并观察电阻器和黄色 LED 断电,但缺陷的红色 LED 亮起。 • 现在测试现场电缆断裂,打开传感器线并观察电阻器和其黄色 LED 立即断电以及指示缺陷的红色 LED 信号。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。