化学计量体积LUH 2是一种顺磁金属,具有与简单金属相当的高电导率。在这里我们表明,通过磨削过程(即,由商业购买的LuH 2粉末制成的CP颗粒)在粒度或表面条件下修改晶粒尺寸或表面条件的敏感性变化,其较高金属粉仍然是金属的,但仍表现出数千倍的电阻性,而较高的电阻率则越来越多,而较高的电阻却增强了较高的势力,而又一次的势力又增强了空中的增强性,并且又增强了空中的增强性。对于这些CP样品,有趣的是,我们有时可以在高温下观察到突然的电阻率下降,这也显示出对磁场和电流的依赖。可变温度XRD,磁敏感性和比热的测量不包括观察到的电阻率下降的结构,磁性和超导转换的可能性。相反,由于氢化计量学的修饰或氧气/氮的污染,我们暂时将上述观察结果归因于晶体表面上的绝缘层的存在。金属晶粒通过绝缘表面的渗透可以解释电阻率的突然下降。因此,目前的结果要求谨慎地认为电阻率下降是超导性的,并使背景减法无效分析电阻率数据。
(原子...之前)电流:电线中电荷流量的速率(单位1安培,a = 1 c/s:1 a in lightbulb; ma在计算机中的Ma)•按电源定义为
对于任何电极配置,都可以建立表面电阻和表面电阻率之间的关系。了解电流密度对于理解这种关系非常有帮助。考虑如图 2 所示的两种材料样品。在恒定电压 U 下,两个样品均由相同材料制成,流过材料的电流量将不同。较厚的棒(样品 #1)比细棒(样品 #2)“更容易”导电。我们可以使用水管类比 - 在恒定水压下,直径越大的管道中每单位时间流过的水就越多。流密度(无论是水还是电流)是通过管道或材料样品单位面积的流量。表面积垂直于流动电流(或水)的方向。
对基于绩效的规格的演变对现成的混合混凝土行业有益于一定程度的可靠测试方法,这是混凝土渗透性的指标。此要求对于由于水和溶解的化学物质的渗透而导致持久性和延长混凝土使用寿命的溶解化学物质而导致的暴露条件很重要。当前指定耐用性的方法是对混凝土施加最大w/cm限制。这是不可验证的,也不认识到补充水泥材料(SCM)提供的重大收益。一种常用的电测试,称为快速氯化物通透性(ASTM C1202)更昂贵,具有缺陷,并且会因少于熟练的测试机构而出现错误。拒绝可接受的混凝土的风险很高。
关于孔掺杂高t c酸奶的少数无可争议的事实之一是它们的超导间隙δ具有D波对称性。根据“肮脏” D -Wave BCS理论,即使是结构性(非磁性)疾病也可以抑制δ,过渡温度t c和超级流体密度ρs。后者受障碍影响的程度取决于散射的性质。相比之下,T C仅对总弹性散射速率(根据剩余电阻率ρ0估计)敏感,应遵循Abrikosov-Gor的KOV搭配配对配方。在这里,我们报告了一组BI2201单晶在ρ0中的较大变化的T C的显着鲁棒性。我们还对LSCO家族进行了近期和历史数据的扩展数据,这些数据挑战了Dirty D波理论的关键预测。我们讨论了这些差异的可能原因,并认为我们不了解丘比特的疾病的本质,或者肮脏的D-波浪场景不是一个合适的框架。最后,我们提出了一种替代性(非BC)场景,该场景可能解释了以下事实:TL2201中的超导圆顶延伸到BI2201和LSCO中的范围,并提出了测试这种情况有效性的方法。
10 Junho Seo、Duck Young Kim、Eun Su An、Kyoo Kim、Gi-Yeop Kim、Soo-Yoon Hwang、Dong Wook Kim、Bo Gyu Jang、Heejung Kim、Gyeongsik Eom、Seung Young Seo、Roland Stania、Matthias Wontwiler、Jinwon Lee、Kenji Watana Joe Be、Jon Il Jun Hanigu Tanyung Yeom、Si-Young Choi、Ji Hoon Shim 和 Jun Sung Kim,Science Advances 6 (3),eaay8912 (2020)。
X射线纳米计算层析成像,22,23,可提供微型58 34,由聚合物粘合剂组合在一起。1,2,8,9粘合剂 - 粒子结构信息,但不是电子或化学59 35积分,最近已被确定为关键设计信息,目前仅限于有效的分辨率60 36参数,以改善SI基复合电子的大约50 nm。61 37 DES,由于其对大型扫描探针显微镜(SPM)中电极弹性的影响,已成为62 38的体积扩张和与电极显微结构的强大工具相关的63 39 39循环的功能相关的收缩。10 - 12 SI纳米颗粒的表面功能化具有
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
由极化类型势能诱导的降解(PID-P)引起的功率损失已观察到可以通过随后的照明来恢复,在某些情况下可以通过同时发生的照明来恢复。在本报告中,我们描述了一项研究的结果,其中封装在具有广泛电阻率的聚合物中的N-PERT细胞的前面暴露于PID测试期间的变化和受控辐照度。对于低电阻率乙烯 - 乙酸乙酸乙烯酯共聚物包裹剂,未观察到辐照度高达1000 W/m 2的辐射率或程度,而对于高和中等电阻率的聚纤维蛋白包装剂,100 W/m 2和300 w/m 2和300 w/m 2的辐射率分别降低了功率损失。我们引入了一个基于电荷积累的简单模型,该模型促进了对这些结果的解释,从而在电压应力下通过电荷积累来降解,在电压应力下和由于光暴露而导致的恢复是相反的相互依存现象,描述了模块对电力损耗的敏感性。