在广泛的一次电子束能量范围内研究了扫描电子显微镜 (SEM) 中的损伤诱导电压变化 (DIVA) 对比度机理,特别强调了超低能量范围。在 10 keV 至 10 eV 的一次电子能量范围内,对用 600 keV He 2 + 离子辐照的 In (0.55) Al (0.45 )P 中的电阻率变化相关的 SEM 成像对比度进行了分析。首次解决了超低能量范围内的样品充电问题及其对 SEM 图像对比度的影响。与基于经典总发射率方法的预期相反,在辐照区域高电阻部分形成的电位导致低于 E 1 能量的一次电子记录信号强度急剧增加,这可以解释为由于样品表面电位充当了一次电子的排斥器而导致的信号饱和。尽管如此,展示电子束能量对电子辐照下绝缘材料表面电位形成影响的实验数据还是首次在超低能范围内给出。
1。最高的电导率(理想情况下为零)。2。电阻的最小可能温度系数(理想情况下为零)。3。高熔点。4。高机械强度。5。高延展性,因此可以轻松地以电线的形式绘制。6。高腐蚀性(无氧化)。 7。 焊接能力,因此可以轻松焊接以加入导体。 8。 低成本。 9。 长寿或耐用。 10。 高灵活性。 上述所需属性随使用材料的目的而变化。 金属或非金属的任何杂质都会增加金属的电阻率。 即使是低电阻率的杂质也会增加金属的电阻率。 其原因是,添加轻微的杂质在晶格中产生了缺陷,从而干扰了电子通过金属的流动。 下表中给出了一些低电阻率或高电导率材料及其具有电阻系数的电阻率: -高腐蚀性(无氧化)。7。焊接能力,因此可以轻松焊接以加入导体。8。低成本。9。长寿或耐用。10。高灵活性。上述所需属性随使用材料的目的而变化。金属或非金属的任何杂质都会增加金属的电阻率。即使是低电阻率的杂质也会增加金属的电阻率。其原因是,添加轻微的杂质在晶格中产生了缺陷,从而干扰了电子通过金属的流动。下表中给出了一些低电阻率或高电导率材料及其具有电阻系数的电阻率: -
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
薄金属薄膜的电阻率与其块体电阻率有显著不同,而且,电阻率随薄膜厚度的减小而增大。当金属薄膜厚度接近电子平均自由程 (EMFP) 时,电阻率的急剧增加通常归因于表面散射和晶界散射。很难将表面散射的影响与与薄膜结构相关的其他因素区分开来。通过非原位 TEM 和 STM 显微镜,广泛研究了与薄膜制备工艺和薄膜电子特性有关的金薄膜的形貌、成核和生长。最近,在沉积和退火过程中通过原位 STM 描述了金薄膜的动力学生长。在报告的研究中,较低厚度下电阻率的快速增加与从连续到不连续的薄膜结构的转变有关。
“奇怪的金属”具有电阻率,具体取决于降低到低t的温度,这是凝结物理学的长期难题。在这里,我们考虑了通过现场哈伯德相互作用和有限限制的自旋 - 旋转相互作用的静脉自旋1 /2 fermions的晶格模型。我们表明,通过电荷闪光与旋转玻璃相熔化相关的量子临界点显示非fermi液体行为,局部自旋动力学与Sachdev-ye-Kitaev模型家族的局部自旋动力学相同。这扩展了先前在SU(M)对称模型的巨大极限上建立的量子自旋液体动力学,以对具有SU(2)Spin-1 /2电子的模型。值得注意的是,量子临界方案还具有与T线性散射速率相关的Planckian线性电阻率和与边缘费米液体现象学一致的电子自我能源的频率依赖性。
1 苏丹王子大学数学与科学系,邮政信箱 66833,利雅得 11586,沙特阿拉伯;muaffaqnofal69@gmail.com 2 哈米德·马吉德先进聚合物材料研究实验室,苏莱曼尼大学科学学院物理系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克 3 科马尔科技大学工程学院土木工程系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克 4 苏莱曼尼大学科学学院化学系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克;hewa.ghareeb@univsul.edu.iq 5 人类发展大学健康科学学院科学医学实验室系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克; jihad.chemist@gmail.com 6 数学与科学系,女子校区,苏丹王子大学,邮政信箱 66833,利雅得 11586,沙特阿拉伯;elhamdannoun1977@gmail.com 7 化学系,科学学院,诺拉公主大学,邮政信箱 84428,利雅得 11671,沙特阿拉伯;sialsaeedi@pnu.edu.sa * 通信地址:shujahadeenaziz@gmail.com
此技术论文描述了锁定放大器的最多用途之一,即四点AC固定测量(也称为四端或四线)。材料或设备的电阻(或者通过样品几何形状进行正常的电阻率)是一种基本特性,可用于理解Maperial的电子行为,无论是从物理,材料科学的角度还是电气工程的角度来看[1-3]。的确,它是我们小组中最早的测量之一,以了解新合成的导电材料。例如,金属的电阻率将随温度降低而降低,而随着电荷载体“冻结”,半导体或绝缘体的电阻率将增加。为了进一步量化金属的质量,可以通过测量室温下的电阻比除以低温下的电阻(4 K)来隔离杂质和晶体缺陷的影响。这是所谓的残余电阻率或RRR。完美的金属晶体将在零温度(无限RRR)下具有零分解性,而杂质会导致耐药性饱和至有限的值(较小的RRR)。纵向抗性当然是识别超导性的关键措施[4,5]。电阻率测量的其他用途包括识别
