AIT 的科学家们创造了 ESP7660-SC 和 ESP8660-SC 系列等 DAF,以满足市场对更高生产率的需求,这些 DAF 可在无压力下更快地固化,在高达 250°C 的温度下实现更快的引线键合,并在高达 200°C 的温度下进行成型操作。AIT 的 ESP7455-HF 和 ESP8450-HF 还利用聚合物分子工程吸收键合界面应力,提高了堆叠芯片大型设备的可靠性。此外,这些薄膜在粘合和固化之前还能提高薄膜的完整性。凭借这些新进展,AIT 率先为最大的 450 毫米晶圆尺寸生产出 8-10 微米的绝缘 DAF。对于需要银填充导电 DAF 的功率器件,AIT 的 ESP8660-HK 已被证明在 20 微米的厚度下效果最佳。
本文通过 HRDP ®(高分辨率可剥离面板)技术介绍了一种新的 RDL 概念。它已受到业界的广泛关注,尤其是对于扇出型、芯片后置、晶圆级和面板级封装组件。本文介绍了 HRDP ® 的结构和材料。可提供各种尺寸和厚度的适用 HRDP ® 载体,用于圆形面板和带有玻璃或硅的方形/矩形面板,以满足客户要求。这可以简化流程并改善界面应力。本文详细介绍了使用 HRDP ® 的工艺步骤,这些步骤基本上使用 RDL 金属图案化中的现有工具(即光刻、显影/Descum 等),而不会破坏装配线布局和工艺流程。HRDP ® 与现有的电介质和光刻胶兼容。事实证明,基于凸块制造厂中用于 RDL 的电介质和光刻胶的功能,已经实现了 2/2 微米及以下的精细 L/S 几何形状。可靠性数据已共享。关键词 载体技术、HRDP ® (高分辨率可脱键面板)、机械脱键、线/间距 (L/S)、最后芯片、RDL、扇出型晶圆级 (FO-WLP)。面板级封装 (PLP)、热膨胀系数 (CTE)。
关于 AI Technology, Inc. 自 1985 年率先将柔性环氧树脂技术用于微电子封装以来,AI Technology 一直是开发用于电子互连和封装的先进材料和粘合剂解决方案的主导力量之一。除了率先使用“相变”材料 (PCM) 作为热界面材料 (TIM) 外,AI Technology 还为微电子封装行业提供了柔性环氧树脂热粘合剂。通过管理粘合粘合剂之间热膨胀系数差异引起的界面应力,这些热管理材料已在关键的军事和航空航天应用中得到广泛使用和成功。相同的无应力介电粘合剂现已适用于铜和铝包覆的绝缘金属基板。这些热管理材料的主要优势是无与伦比的长期可靠性,这归因于其能够承受反复的热循环和散热板与电路层之间的无应力粘合。AI Technology 还为更先进的多层绝缘金属基板电路和模块提供具有高导热性的相同柔性环氧预浸料。这种新型热管理材料为太阳能电池、LED 面板等电源模块的大面积热管理提供了平台和基础设施。AI Technology 拥有全系列芯片和基板粘接膜和糊剂、热界面材料、(EMI/RFI)缓解材料解决方案、导电填缝剂和粘合剂以及先进的柔性和绝缘金属电路基板。该公司在新泽西州普林斯顿交界处占地 16 英亩的园区内拥有经 ISO9001:2000 认证的制造和研发设施。销售支持包括公司在中国深圳和香港的直属办事处以及欧洲和亚洲的销售代表。
摘要:固态电池(SSB)是现任锂离子技术的有前途的替代品;但是,他们面临一系列独特的挑战,必须克服这些挑战,以使其广泛采用。这些挑战包括高电阻,动力学缓慢的固体 - 固体界面,以及形成界面空隙的趋势,导致由于断裂和分层而导致的循环寿命降低。这项建模研究通过将化学和机械材料特性与其电化学响应联系起来,探测了固体电解质(SE)固体 - 固体界面上应力的演变,可以用作优化基于硅(SI)SSB的设计和制造的指南。研究了由无定形SI负电极(NE)组成的薄膜固态电池,该电池由SI的静脉诱导的膨胀引起的SE施加压缩应力。通过使用2D化学 - 机械模型,使用连续尺度模拟来探测施加的压力和C率对细胞应力 - 应变响应的影响及其对整体细胞容量的影响。由于LI通过Si的缓慢扩散而导致局部菌株,因此在Si电极内产生了复杂的浓度梯度。为了减少100%SOC的界面应力和应变,需要在中等的C速率下运行低施加压力。另外,可以对SE的机械性能进行量身定制以优化细胞性能。但是,如果SE应力的减少更加关注,则应针对具有中等屈服强度(1-3 GPA)的符合年轻的模量(约29 GPA)。为了减少SI应激,应选择具有与磷氧硝酸锂(〜77 GPa)相似的中等年轻模量的SE,应选择与硫化物相当的低屈服强度(〜〜0.67 GPA)。这项研究强调了对SE材料选择的需求和其他细胞成分的考虑,以优化薄膜固态电池的性能。关键字:固态电池,薄膜,实心电解质,材料选择,有限元分析模型,弹性,塑料,硅负电极