免责声明 本出版物由美国运输部国家公路交通安全管理局分发,以方便信息交流。本出版物中表达的观点、发现和结论均为作者的观点,并不一定代表运输部或国家公路交通安全管理局的观点。美国政府对其内容或使用不承担任何责任。如果提及贸易或制造商的名称或产品,则因为它们被视为出版物内容所必需的,不应被视为认可。美国政府不认可产品或制造商。建议的 APA 格式引用:Campbell, J. L., Brown. J. L., Graving, J. S., Richard, C. M., Lichty, M. G., Sanquist, T., … & Morgan, J. L.. (2016 年 12 月)。人为因素设计指南,用于驾驶员-车辆界面 (报告编号 DOT HS 812 360)。华盛顿特区:国家公路交通安全管理局。
Ahn, G., Banik, SM, Miller, CL, Riley, NM, Cochran, JR 和 Bertozzi, CR (2021) LYTACs 与去唾液酸糖蛋白受体结合,实现靶向蛋白质降解。《自然化学生物学》,17 (9),937–946。https://doi.org/10.1038/s41589-021-00770-1 Alabi, SB 和 Crews, CM (2021) 靶向蛋白质降解的重大进展:PROTACs、LYTACs 和 MADTACs。《生物化学杂志》,296,100647。https://doi.org/10.1016/j。 jbc.2021.100647 Banik, SM, Pedram, K., Wisnovsky, S., Ahn, G., Riley, NM 和 Bertozzi, CR (2020) 溶酶体靶向嵌合体用于降解细胞外蛋白质。《自然》,584 (7820),291–297。https://doi. org/10.1038/s41586-020-2545-9 Baptista, CG, Lis, A., Deng, B., Gas-Pascual, E., Dittmar, A., Sigurdson, W. 等人 (2019) 弓形虫 F-box 蛋白 1 是寄生虫复制过程中子细胞支架功能所必需的。PLoS Path,15 (7),e1007946。 https://doi.org/10.1371/journal.ppat.1007946 Benamrouz, S., Conseil, V., Chabe, M., Praet, M., Audebert, C., Blervaque, R. 等人 (2014) Cryptosporidium parvum 诱发的小鼠回盲腺癌和 Wnt 信号传导。Dis Model Mech,7 (6), 693–700。https://doi.org/10.1242/ dmm.013292 Bensimon, A., Pizzagalli, MD, Kartnig, F., Dvorak, V., Essletzbichler, P., Winter, GE 等人。 (2020) SLC 转运体的靶向降解揭示了多次跨膜蛋白对配体诱导的蛋白水解的适应性。细胞化学生物学,27 (6),728–739 e729。https://doi.org/10.1016/j.chembiol.2020.04.003 Bond, MJ, Chu, L., Nalawansha, DA, Li, K. & Crews, CM (2020) VHL 募集 PROTAC 靶向降解致癌 KRAS(G12C)。ACS 中心科学,6 (8),1367–1375。https://doi。 org/10.1021/acscentsci.0c00411 Bondeson, DP、Mares, A.、Smith, IED、Ko, E.、Campos, S.、Miah, AH 等人 (2015) 小分子 PROTAC 催化体内蛋白质敲低。《自然化学生物学》,11 (8),611–617。https://doi. org/10.1038/nchembio.1858 Bondeson, DP、Smith, BE、Burslem, GM、Buhimschi, AD、Hines, J.、Jaime-Figueroa, S. 等人 (2018) 从使用混杂弹头的选择性降解中吸取的 PROTAC 设计经验。《细胞化学生物学》,25 (1),78–87.e75。 https://doi.org/10.1016/j.chembiol.2017.09.010 Bougdour, A.、Durandau, E.、Brenier-Pinchart, M.-P.、Ortet, P.、Barakat, M.、Kieffer, S. 等人。 (2013) 弓形虫对宿主细胞的颠覆
目的。观察脑部计算机界面的下肢康复机器人(BCI-LLRR)对中风的功能恢复并探索机制的影响。方法。亚急性相卒中患者被随机分为两组。除了常规干预外,治疗组的患者在BCI-LLR上接受了培训,并在对照组进行了下肢踏板训练,均在同一时间(30分钟/天)。所有患者均通过诸如美国国立卫生研究院量表(NIHSS)和FUGL -MEYER上和下肢运动功能和平衡测试等工具进行评估。在治疗前还对患者进行了4周的测试。结果。4周后,在治疗组和对照组中,FUGL – Meyer腿部功能和NIHSS得分显着提高(P <0。01)。在3个月时,观察到进一步的显着改善。te MEP振幅和治疗组的潜伏期显着改善了对照组。对分数各向异性值的治疗效果不是显着的。结论。te bci-llrr在中风后促进了腿部功能恢复,并改善了日常生活的活动,这可能是通过改善脑皮质兴奋性和白质连接性来促进了腿部恢复。
基于KTAO 3的二维电子气体(2DEGS)由于其高RASHBA自旋 - 轨耦合(SOC)和栅极电压可调性而成为自旋轨道货币学的有前途的平台。最近在KTAO 3 2DEG中发现了超导状态,现在将其潜力扩大到拓扑超导性。尽管使用角度分辨光发射光谱(ARPES)绘制了各种晶体学取向的KTAO 3表面的带状结构,但对于超导KTAO 3 2DEGS并非如此。在这里,我们通过ARPES测量结果揭示了基于KTAO 3(111)单晶的超导2DEG的电子结构。我们使用紧密结合模型拟合数据,并计算相关的旋转纹理,以使您的SOC驱动物理学洞悉该迷人系统的SOC驱动物理。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
摘要:本文提出了一种使用嵌入式集成传感器界面的实时热监测方法,该界面专用于工业集成系统应用。工业传感器接口是涉及模拟和混合信号的复杂系统,其中几个参数可以影响其性能。这些包括在敏感的综合电路附近存在热源,需要考虑各种传热现象。这需要实时热监测和管理。的确,瞬态温度梯度或温度差异变化的控制以及先进集成电路和系统早期设计阶段可能引起的热冲击和应力的预测至关重要。本文解决了微电子应用在几个领域的增长需求,这些领域的高功率密度和热梯度差异的差异是由于在同一芯片上实施不同系统(例如新生成5G电路)引起的。为了减轻不良热效应,使用应用于Freescale嵌入式传感器板的McUxPresso工具提出了实时预测算法,并通过将嵌入式传感器编程到FRDM-KL26Z板上,以实时监控和预测其温度预测。基于离散温度测量值,嵌入式系统用于预测嵌入式集成电路(IC)中的过热情况。在本文中,还提供了FPGA实施和比较测量值。这些结果证实了所提出算法的峰检测能力,该算法可令人满意地预测FRDM-KL26Z板中的热峰,并使用有限元元素热分析工具(用于系统分析的数值集成元件(NISA)工具),以评估可能是当地热力学压力的水平。这项工作为热应力和局部系统过热提供了解决方案,这是集成传感器界面设计人员在设计各种高性能技术或恶劣环境中的集成电路时的主要关注点。
大脑计算机接口(BCI)提供了大脑与计算机或其他外部设备之间的直接通信链接。他们通过加强或替代人类外围工作能力来提供扩展的自由度,并在康复,情感计算,机器人技术,游戏和神经科学等各种领域具有潜在的应用。在全球范围内的重要研究工作为技术标准化提供了共同的平台,并有助于应对高度复杂和非线性的大脑动力学以及相关的功能提取和分类挑战。时间变化的心理神经生理学及其对大脑信号的影响对BCI研究人员构成了另一个挑战,即将技术从实验室实验转变为插入日常生活。本评论总结了过去几十年来BCIFIER的最新进展,并突出了关键挑战。
摘要:衰老过程是一种多方面的现象,影响认知影响和身体功能以及与环境的相互作用。尽管主观认知能力下降可能是正常衰老的一部分,但由于痴呆症患者的神经认知障碍中存在认知障碍,因此对认知障碍存在负面变化,功能能力最大。基于脑电图的大脑 - 机器界面(BMI)用于帮助老年人进行日常活动,并通过神经透明度应用来改善其生活质量。本文提供了用于帮助老年人的BMI概述。考虑了有关用户需求的技术问题(检测信号,提取功能,分类)和与应用程序相关的方面。
在中枢神经系统病变后,为患有运动障碍的患者开发可靠的辅助设备仍然是非侵入性脑部计算机界面(BCIS)领域的主要挑战。这些方法主要由脑电图造影,并依靠高级信号处理和机器学习方法来提取运动活动的神经相关性。但是,尽管巨大的努力仍在进行,但它们作为有效临床工具的价值仍然有限。我们主张,一个相当被忽视的研究途径在于努力质疑传统上针对非侵入性运动BCIS的神经生理标记。我们提出了一种替代方法,该方法是基于非侵入性神经生理学的最新进展,特定主题的特征特征特征提取了通过(可能是磁脑摄影术 - 优化)的磁磁磁性术记录的感应活动爆发。这条道路有望克服现有限制的显着比例,并可以促进在康复协议中更广泛地采用在线BCI。
最近的研究已开始评估人们对语音用户界面(VUI)作为对话伙伴(称为合作伙伴模型)的看法。当前的自我报告措施仅在英语中可用,将研究限制在说英语的用户。为了改善用户样本和环境的多样性,我们对合作伙伴建模研究的信息进行了介绍,我们对非英语的西方(德语,n = 185)和东亚(日语,n = 198)的同类进行了翻译,局部和评估合作伙伴建模问题(PMQ)。通过验证性因素分析(CFA),我们发现该量表对我们的德国和日语翻译产生了等效水平的“优点拟合”,从而证实了其跨文化有效性。仍然,交流灵活性因子的结构并未直接在西亚和东亚人群中复制。我们讨论了我们的翻译如何对伙伴模型使用和设计的文化相似性和差异开放批判性研究,同时强调确保在文化环境中准确翻译的挑战。