本报告中的建议基于短期内开展的工作。除非另有说明,本报告代表了 IWG 流程中汇总的观点,而不是任何个人或公司的观点。由于时间有限,并且本报告是 IWG(作为一个独立团体)而非 FCA 的成果,因此未进行完整的 FCA 咨询流程。我们已尽一切努力让更广泛的社区参与进来,并将他们的观点反映在提案中。但是,可能无法完全反映所有观点。听取了许多不同的意见,这些意见并不总是完全一致,因此,作为主席,我力求确保公平和平衡,同时为后续报告中的建议进一步发展留有余地。
• 大多数扭矩紧固接头不使用垫圈,因为使用垫圈会导致紧固过程中螺母和垫圈之间或垫圈和接头表面之间产生相对运动。这会改变摩擦半径,从而影响扭矩-张力关系。如果需要更大的轴承面,则可以使用法兰螺母或螺栓。如果要使用垫圈,与螺栓杆紧密贴合的硬垫圈可提供更低、更一致的摩擦,通常是首选。• 去除紧固件上通常存在的油膜会降低给定扭矩的张力,并可能导致紧固件在达到所需张力之前发生剪切。• 由石墨、二硫化钼和蜡配制的超级润滑剂可产生最小的摩擦。除非在指定的紧固扭矩中留有余地,否则诱导张力可能会过大,导致螺栓屈服和失效。但是,如果以可控的方式使用,这些润滑剂可以有效地降低扭矩,以产生所需的张力,这意味着可以使用较低容量的紧固工具。• 出于外观或耐腐蚀的原因,紧固件可能会镀层。这些处理会影响摩擦系数,从而影响扭矩与张力的关系。• 通常会故意在紧固件中引入摩擦,以减少因振动而松动的可能性。在确定正确的紧固扭矩时,必须考虑诸如锁紧螺母之类的装置。
帕塔克森特河海军航空站 (NAS) (PAX) 直升机运营简史。1949 年 4 月,美国海军在当时称为马里兰州帕塔克森特河海军航空测试中心的地方正式成立了飞行测试部门的旋翼机部门。1975 年,旋翼机测试部门更名为旋翼机测试理事会,并于 2002 年正式成立为空中和测试评估中队。成立于 1945 年的美国试飞员学校 (USNTPS) 于 1961 年增加了旋翼机教学大纲。为什么帕塔克森特河海军航空站要进行如此多的直升机运营?NAS PAX 是美国海军的总部,负责研究、开发、测试和评估海军飞机、飞机部件以及执行军事任务所需的相关系统。除了 USNTPS 和空中行动搜救 (SAR) 课程之外,直升机还是租户中队 HX-21 和 VX-1 不可或缺的一部分。为什么直升机会在人们的家上空或附近飞行?所有飞行都必须遵守《联邦法规法典》(CFR) 中公布的 FAA 高度规定以及 NAS PAX 河流航空运营手册中的规定。飞行路线遵循 FAA 设定的标准,并且尽可能在水上或海岸线区域进行测试和训练操作。但是,在某些时候,设施上的天气、风或施工可能需要飞机改变路线。NAS PAX 的直升机遵循已公布的运营路线。这些飞行路线图显示了飞行员可能采取的一般路线,并且在每条路线的飞行中都留有余地。进行例行训练和测试活动对于我们军人的精确性和安全性以及他们任务的成功至关重要。根据任务需要,所有测试和训练活动都经过仔细监控、记录和批准。
我很高兴向大家介绍《项目融资法律评论》的第三版,该版现在包括更多新章节,涵盖政府投资协议、商业贷款人、政府融资和建设风险。这一版以前两版为基础,扩大了所提供资源的范围和深度。近年来,项目市场发生了许多变化,包括流向可再生能源(以及碳捕获和储存、氢气等更多新项目)的资本大幅增长,监管环境对大型项目可行性的影响日益增大,现在,随着世界逐渐从新冠疫情引发的经济衰退中复苏,作为各种经济刺激计划的一部分,政府为选定的项目提供了大量融资。不出所料,项目融资继续随着它所服务的市场而发展。本书的目的是提供一份定期更新的项目融资指南,同时仍涉及每个从业者需要了解的核心项目融资概念。本卷力求涵盖最突出的主题,同时为将来的版本扩展到其他关键领域(例如夹层融资、新技术风险对项目融资的影响以及环境、社会和治理 (ESG) 问题)留有余地。如第 1 章末尾简要讨论的那样,所有这三个领域都发生了巨大的变化,新的资金来源(例如私募股权、养老基金和主权财富基金)、寻求融资的项目性质的变化(现在可能涉及碳捕获甚至直接空气捕获二氧化碳等新技术)以及主要贷款机构实施的更严格的环境限制(特别是关于气候变化问题),所有这些都改变了项目融资市场的面貌。未来几年,所有这些主题应该会更加清晰,特别是石油和天然气行业项目融资的未来。我要感谢第三版的所有作者,特别是那些贡献了新章节或对早期作品进行重大更新的作者。他们的努力使得本书比以往任何时候都更加有用,因为我们即将进入新的十年,面临着全球政治和全球市场(包括项目融资市场)日益增加的不确定性。所有作者都希望本书不仅对今天的所有读者有用,而且在未来几年中其范围和实用性也将继续扩大。
不受控制的火箭再入造成的不必要风险 Michael Byers 加拿大不列颠哥伦比亚大学政治学系,温哥华,不列颠哥伦比亚省 Ewan Wright 1 加拿大不列颠哥伦比亚大学跨学科研究研究生课程,温哥华,不列颠哥伦比亚省 Aaron Boley 加拿大不列颠哥伦比亚大学物理与天文学系,温哥华,不列颠哥伦比亚省 Cameron Byers 加拿大维多利亚大学工程学士课程 1. 摘要 2020 年,超过 60% 的低地球轨道发射导致一个或多个火箭体被遗弃在轨道上,并最终以不受控制的方式返回地球。在这种情况下,它们 20% 到 40% 的质量会在重返大气层的热量中幸存下来。许多幸存的碎片非常重,足以对陆地、海上和飞机上的人们构成严重风险。对于重返太空物体的可接受风险水平,国际上尚无共识。这有时是一个争论点,例如 2021 年 5 月,重达 20 吨的长征 5B 火箭核心级失控再入。包括美国、法国和欧空局在内的一些监管机构已经对重返大气层的太空物体设定了 1/10,000 的可接受伤亡风险(即对人类生命的统计威胁)阈值。我们认为,这一阈值忽略了火箭发射次数迅速增加的累积效应。它也无法解决低风险、高后果的结果,例如火箭级撞上人口稠密的城市或大型客机。在后一种情况下,即使是一小块碎片也可能造成数百人伤亡。除此之外,当遵守成本被认为过高时,这一门槛经常被忽视或放弃。我们分析了 1992 年至 2021 年重返大气层的火箭体,并模拟了相关的累积伤亡预期。然后,我们将这一趋势推断到不久的将来(2022 - 2032 年),模拟不受控制的火箭体再入对全球人口的潜在风险。我们还分析了目前在轨并预计很快将脱离轨道的火箭体数量,发现风险分布明显偏向赤道附近的纬度。这意味着主要航天国家给全球南方国家带来了不成比例的伤亡风险负担。现代火箭拥有可重新点燃的发动机,允许受控再入偏远的海洋区域。这与更新的任务设计相结合,将消除大多数不受控制的再入的需要。一些额外的成本将落在发射提供商身上,包括再入机动的额外燃料。政府任务应该能够吸收这些额外成本,但它们可能会影响商业发射提供商的竞争力。全球南方国家,不受控制的火箭弹体给这些国家的人民带来了不成比例的风险,因此,应该要求主要航天国家通过强制控制火箭再入来创造公平的竞争环境。这一解决方案必须由多边协调,必须对不遵守规定的行为产生有意义的后果,同时为那些无法立即参与或负担得起控制再入的人留有余地。1 通讯作者:etwright@student.ubc.ca
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.