定量实时PCR(QPCR)是一种敏感且常用的基因表达分析技术,并提供了对生物系统的见解。成功的QPCR需要使用适当的参考基因来进行数据归一化。在本研究中,我们旨在识别和评估近乎异构抗性(R)和易感的(S)番茄线中最佳的参考基因感染了begomovirus番茄卷曲卷曲特技病毒(TOCSV)。十个候选参考基因,即Actin7(ACT),β-6微管蛋白(TUB),ubiqui-3(UBI),网格蛋白辅助络合物中等亚基(CAC),植物苯乙烯去饱和酶(PDS),表达蛋白质(Exp),表达蛋白(Exp),糖 - 3-氢酶(Gap)dehyhydyhyhyhyhyhyhyhyhyhyddroplhats gaplospy(Gap)(Gap)(Gap)(Gap)(磷酸化磷酸化酶(Gap))(Gaps)(磷酸化磷酸化酶(Gap))(Gaps)(磷酸化磷酸化酶(Gap))(磷酸化磷酸化酶(Gap))(磷酸化磷酸磷酶)选择磷酸贝素转移酶样蛋白(APT1),TAP42相互作用蛋白(TIP41)和伸长因子1-α(EF1α)(EF1α),并评估其在耐药性和易感番茄叶中使用分析性工具,Normfin-der,Normfin-der,BestEpeper和Reffinder和Reffindine的耐药性和敏感番茄叶片中的表达能力。在将参考基因从大多数到最不稳定进行排名之后,结果表明,在S系中,ACT,EXP和EF1α的组合以及R在R线中的TIP41,APT1和ACT的组合适用于QPCR归一化。此外,为了验证已鉴定的参考基因,超级氧化物歧化酶(SOD),热休克蛋白70(HSP70)和谷胱甘肽-S-转移酶(GST)的选择是作为TAR-获取归一化的。与最稳定的基因相比,针对最稳定的参考基因进行标准化时,靶基因的相对表达变化。这些结果强调了在QPCR研究中仔细选择参考基因以进行准确正常的重要性。
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
摘要:雄性不育在杂交制种中可降低成本、提高种子纯度,但目前雄性不育在番茄杂交制种中的商业化应用尚未得到广泛推广。CRISPR/Cas9介导的基因编辑技术可加速雄性不育在杂交制种中的实际应用。本研究利用CRISPR-Cas9系统在两个番茄亲本中同时敲除雄性不育10(Ms10)和花青素缺失(AA)两个紧密连锁基因座下的DYSFUNCTIONAL TAPETUM1(SlDYT1)和谷胱甘肽S转移酶(SlGSTAA)。产生的dyt1gstaa双突变体因花青素缺乏而出现绿色下胚轴,并表现出稳定的雄性不育性。使用绿色下胚轴作为形态标记,雄性不育的选择效率高达 92%,此后,我们开发了一种借助形态标记选择的雄性不育高效稳定的繁殖策略。此外,我们还生产了 dyt1gstaa 衍生的杂交种子,发现其产量、重量和发芽率与相应的 WT 衍生 F1 种子相当。dyt1gstaa 系统不仅将杂交种子纯度提高到 100%,而且还有助于快速、经济高效地测定。此外,我们还发现该系统对重要的农艺性状没有明显的副作用。这项研究表明,我们利用 CRISPR/Cas9 创建的 dyt1gstaa 系统可以应用于番茄杂交种子生产。
abhishek_official@hotmail.com,mahato.satyajeet1@gmail.com摘要:农业是我们社会最关键的领域之一,自从中世纪以来。作物疾病是对粮食安全的重大威胁,但是由于世界许多地方缺乏设施,因此很难及时检测。细菌和真菌以多种方式感染番茄植物。早期疫病和晚期疫病是两种影响植物的真菌疾病。细菌斑是由四种xanthomonas物种引起的,可以在多于西红柿的任何地方找到。智能手机辅助疾病检测现在是可能的,这要归功于全球智能手机的渗透不断上升,并且通过深度学习使机器视觉的最新发展成为可能。为了区分不同的番茄叶,我们使用了54,306张在受控条件下收集的患病和健康植物叶片图像的公共数据集训练了深度卷积神经网络疾病,并选择了西红柿的图像。对越来越广泛且公共可访问的图像数据集的培训深度学习模型指向技术诊断的直接途径。关键字:早期疫病,晚疫病,细菌斑点,叶片,片状叶斑,靶点点,黄色叶卷病毒,Mosiac病毒,两个斑点的蜘蛛螨1.引言农业是每个文明的基本基础之一。种植蔬菜(如西红柿)在印度各种亚热带气候中有效。一种患病的植物无法达到其正常状态。晚疫病和早期疫病是两种常见的番茄疾病[1]。一种疾病也可以描述为干扰植物的产量并降低其活力。在印度,疾病随季节的变化而受到环境因素的影响。病原体和本季节种植的各种作物在这些疾病中起作用。他们有可能破坏番茄植物和农业土地。可能会发现晚期疫病和植物叶的早期疫病,但是如果手动执行需要很长时间。结果,需要更新的更改。借助图像处理和计算机视觉,有很多方法可以检测对象及其独特的特征。深度学习CNN模型[2]是最常见的方法之一。在我们的情况下,该模型将根据叶子的图片检测疾病。
假单胞菌具有代谢灵活性,可以在不同的植物宿主上茁壮成长。然而,宿主滥交所需的代谢适应性尚不清楚。在这里,我们通过采用 RNAseq 并比较东湖假单胞菌 P482 对两种植物宿主(番茄和玉米)根系分泌物的转录组反应来弥补这一知识空白。我们的主要目标是找出这两种反应之间的差异和共同点。仅由番茄分泌物上调的途径包括一氧化氮解毒、铁硫簇的修复、通过对氰化物不敏感的细胞色素 bd 进行呼吸以及氨基酸和/或脂肪酸的分解代谢。前两个表明测试植物的分泌物中存在 NO 供体。玉米特异性地诱导了 MexE RND 型外排泵的活性和铜耐受性。与运动相关的基因由玉米诱导,但被番茄抑制。对渗出液的共同反应似乎受到来自植物的化合物和来自其生长环境的化合物的影响:砷抗性和细菌铁蛋白合成上调,而硫同化、柠檬酸铁和/或其他铁载体的感知、血红素获取和极性氨基酸的运输下调。我们的研究结果为探索植物相关微生物的宿主适应机制提供了方向。
多个Gretchen Hagen 3(GH3)基因通过其在维持激素稳态中的作用而与植物生长和发育的一系列过程有关。但是,关于GH3基因在番茄(Solanum lycopersicum)中的功能的研究有限。在这项工作中,我们研究了番茄GH3基因家族成员SLGH3.15的重要功能。SLGH3.15的过表达导致该植物的上述和地下部分的严重矮人,伴随着自由IAA含量的大幅降低,并降低了SLGH3.9的表达,SLGH3.9(SLGH3.15)的表达。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。 虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。 总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。
番茄的遗传基础狭窄,给育种带来了严峻挑战。因此,随着成簇的规律间隔短回文重复序列 (CRISPR) 相关蛋白 9 (CRISPR/Cas9) 基因组编辑的出现,快速高效的番茄育种已成为可能。番茄的许多性状已使用 CRISPR/Cas9 进行编辑和功能表征,例如植物结构和花的特性(例如叶、茎、花、雄性不育、果实、单性结实)、果实成熟、品质和营养(例如番茄红素、类胡萝卜素、GABA、TSS、花青素、保质期)、抗病性(例如 TYLCV、白粉病、晚疫病)、非生物胁迫耐受性(例如热、旱、盐度)、CN 代谢和除草剂抗性。CRISPR/Cas9 已被证明可用于将野生近缘种的优良性状从头驯化到栽培番茄,反之亦然。 CRISPR/Cas 的创新允许使用在线工具进行单向导 RNA 设计和多路复用、克隆(例如 Golden Gate 克隆、GoldenBraid 和 BioBrick 技术)、强大的 CRISPR/Cas 构建体、高效的转化方案(例如农杆菌)和用于 Cas9-gRNAs 核糖核蛋白 (RNPs) 复合物的无 DNA 原生质体方法、Cas9 变体(例如无 PAM 的 Cas12a 和 Cas9-NG/XNG-Cas9)、基于同源重组 (HR) 的双生病毒复制子基因敲入 (HKI) 以及碱基/引物编辑(Target-AID 技术)。这篇小型评论重点介绍了 CRISPR/Cas 在番茄快速高效育种方面的最新研究进展。
在本研究中,通过刺激番茄植物中生化防御和生理生物化学性能,研究了促进真菌植物生长(PGPF)的改善能力。从Beta ufgaris Rotosphere培养的土壤(Tamiya,Fayoum省,埃及)中总共分离了25种真菌分离株。这些真菌分离株的特征是某些植物生长促进活性代谢产物的产生,从而增强植物生长并抑制疾病。选择了四种真菌分离株作为植物生长促进最多的。四个真菌分离株在形态上被鉴定为尼日尔曲霉,弗拉夫斯,粘液sp。和青霉sp。在温室条件下,用这些真菌治疗的番茄植物分别对枯萎病显着降低。生化防御,例如渗透压,氧化应激和抗氧化剂酶的活性,在种植后60天进行。结果表明,氧化孢子菌株对番茄植物的高度破坏性作用为PDI 87.5%。此外,适用于感染番茄的PGPF滤液改善了渗透液,总苯酚和抗坏血酸。有趣的是,枯萎病对番茄植物的有害影响大大降低了,从降低的MDA和H 2 O 2水平可以明显看出。因此,这些结果强调,土壤含有拮抗真菌提供了几种植物生长 - 促进真菌(PGPF),可以将其作为番茄植物中强大的生物控制剂利用,以针对紫红色枯萎病。Biostimulans包括非致病性关键词:促进真菌的植物生长;镰刀菌;生物压力,生化防御。在气候变化的威胁和病原体的传播,提高农作物生产力并避免使用化学农药的情况下引入引入是农业行业的主要问题[1]。真菌疾病是许多国家对农作物造成严重损害的最危险的生物学压力之一[2]。最著名的真菌疾病病原体之一,镰刀菌,会对农作物,尤其是蔬菜作物产生负面影响[3-5]。然而,通过番茄生长的所有阶段,氧气孢子菌引起的真菌枯萎病[6,7]。番茄被认为是埃及最重要的作物之一,用于局部喂养和出口[8]。考虑到番茄作物的重要性,开发了提高对生物胁迫(例如真菌等生物压力)的新管理方法的发展,可能有助于增强安全且不含有害化学农药的全球粮食生产[9]。一致认为,可以通过外部喷洒生物和非生物刺激或诱导剂来激活植物感染的植物免疫。
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
摘要:番茄晚疫病(LB)的病原菌是致病疫霉菌,是一种毁灭性的疾病,严重影响植物的生产力。植物中易感基因(S)的存在促进了病原菌的增殖;因此,抑制这些基因可能有助于提供广谱和持久的耐受性/抗性。先前对拟南芥和番茄的研究表明,PMR4 易感基因的敲除突变体对白粉病具有耐受性。此外,马铃薯中 PMR4 的敲低已被证明可以赋予对 LB 的耐受性。为了在本研究中验证番茄中的相同效果,将含有四个单向导 RNA(sgRNA:sgRNA1、sgRNA6、sgRNA7 和 sgRNA8)的 CRISPR-Cas9 载体(靶向尽可能多的 SlPMR4 区域)通过农杆菌介导的转化引入两种广泛种植的意大利番茄品种:“San Marzano”(SM)和“Oxheart”(OX)。选择了 35 株植物(26 株 SM 和 9 株 OX)并进行筛选,以确定 CRISPR/Cas9 诱导的突变。不同的 sgRNA 导致的突变频率范围从 22.1% 到 100%,或者精确插入(sgRNA6)或缺失(sgRNA7、sgRNA1 和 sgRNA8)。值得注意的是,sgRNA7 在七种 SM 基因型中诱导了纯合状态下的 − 7 bp 缺失,而 sgRNA8 导致产生十五种具有双等位基因突变( − 7 bp 和 − 2 bp)的 SM 基因型。选定的编辑品系接种了 P. infestans,其中四种在 PMR4 基因座完全敲除的品系与对照植物相比表现出减轻的病害症状(易感性从 55% 降低到 80%)。使用 Illumina 全基因组测序对四种 SM 品系进行测序以进行更深入的表征,而未显示出候选脱靶区域发生任何突变的证据。我们的结果首次表明,pmr4 番茄突变体对致病疫霉菌的易感性降低,证实了 KO PMR4 在提供针对病原体的广谱保护中的作用。