用于手术导航的无线惯性磁力仪 电磁跟踪 (EMT) 是临床环境中无视线仪器跟踪和导航的黄金标准。与 GPS 导航类似,医疗器械的位置在 MRI 或 CT 生成的患者身体“地图”上进行跟踪,而无需依赖 X 射线成像,因为 X 射线成像在持续使用的情况下对患者和临床医生都有害。当前的 EMT 技术在标准医疗手术室环境中性能下降。附近的金属物体会引入磁失真误差,从而损害患者体内的准确跟踪。此外,最关键的微创干预需要越来越小的仪器,例如腔内手术,其中使用人体的自然结构(例如静脉和气道)进入手术部位。因此,需要更小的 EMT 传感器来满足这些现代临床需求。我的目标是在小型化、无线操作和使用新的微型传感器更简单地集成到医疗设备方面推进 EMT 技术。利用现代硅制造技术,EMT 传感器的微型化将为将这些微型传感器集成到尖端导管设计中铺平道路。现有磁传感器和智能手机中常见的惯性测量功能的传感器融合将用于减轻材料磁畸变的影响。最后,将探索这些组合传感器单元的无线操作。这些传感器将集成到 Integer 开发的导管和新设备的临床前验证中,并将与法国斯特拉斯堡的图像引导手术研究所 (IHU) 和挪威特隆赫姆的工业和技术研究基金会 (SINTEF) 合作进行,我们的团队与他们有着密切的合作关系。这项研究将加速 EMT 在临床环境中的整合,并改善临床医生和患者的手术结果。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
急性淋巴细胞白血病(ALL)是由多种复发遗传畸变的星座驱动的异质癌。样品骨髓的易感性可以轻松进入癌细胞,并可以深入探索所有驱动全部的遗传学。自然而然地使用了每个新的GE网络工具,所有人的遗传星座通常是第一个探索的边界。这些深度探索导致了所有遗传星座的详细图(图1),这是世界卫生组织造血和淋巴组织肿瘤分类的基础。从1960年代建立核分型和染色体带时,调查人员开始了这项60年的发现旅程。此发现始于异常的整个染色体拷贝数,称为非整倍性。多余的染色体> 50,也称为高二倍体,是最常见的驱动因素(图1)。易位,其中一块染色体被异常融合,导致发现费城(pH)染色体T(9; 22)/ bcr :: abl1 and t(1; 19)/ tcf3 :: pbx1。不会更改诸如t(12; 21)/ etv6 :: runx1之类的频带模式的易位花费更长的时间才能屈服。与此发现并行的是更好的治疗方法。通过更好的治疗方法,研究人员发现这些遗传驱动因素是预后的,即他们预测复发的风险。遗传亚型的这种预后价值产发了遗传风险分层,并最终以遗传驱动的治疗,例如添加伊马替尼和dasatinib对pH值的添加。2使用单然而,核型淋巴细胞的困难以及对许多不同诊断平台的需求,例如多种荧光原位杂交(FISH)探针,有限的广泛使用遗传分层。在2000年代,基因阵列诱人地承诺了一个平台来询问所有人的遗传驱动因素。基因ex Prassion微阵列同时测量了数以万计基因的表达lev els,它允许发现“新颖”亚型1(后来发现是DUX4亚型)和pH样亚型。
缩写列表 表格列表 图表列表 1. 引言 1.1. 全球能源趋势 1.2. 摩尔多瓦共和国电力系统的现状 1.3. 摩尔多瓦共和国电力系统的能源转型愿景 1.4. 论文的目的和目标 1.5. 论文结构 2. 摩尔多瓦共和国可再生能源潜力 2.1. 摩尔多瓦共和国的光伏能源潜力 2.1.1. 摩尔多瓦共和国地理一般数据 2.1.2. 自上而下评估光伏能源潜力的方法 2.1.3. 光伏能源潜力评估方法 2.1.4 摩尔多瓦共和国光电技术潜力评估 2.2. 摩尔多瓦共和国的风能潜力 2.2.1. 风能和能源 2.2.2.风能潜力评估方法 2.2.3. 风能图集方法 2.2.4. 摩尔多瓦共和国风能技术潜力评估 3. 可再生能源存在下的电力系统运行 3.1. 大规模将可再生能源整合到电力系统中所面临的挑战 3.1.1. 可再生能源管理 3.1.2. 可变可再生能源对电力系统运行的影响 3.1.3. 可变可再生能源对电力质量的影响 3.1.4. 电力系统的可靠性和弹性 3.1.5. 社会经济和环境方面 3.2. 将可变可再生能源整合到电力系统中的解决方案 3.2.1. 无功功率控制 3.2.2. 使用电力存储系统 3.2.3. 智能电网 3.2.4. 网络安全 3.2.5.可变可再生能源融入电力市场 3.2.6. 通过定价政策促进可变可再生能源 3.3. 风力发电厂和光伏发电厂 3.3.1. 风力发电厂的布局和发电机组的选择 3.3.2. 风力发电厂年发电量估算 3.3.3. 光伏发电厂的布局和装机容量估算 3.3.4. 光伏发电机组的选择和年发电量估算 3.3.5. 研究案例:配电系统中谐波畸变的传播 4. 太阳辐照度和风速预测 4.1. 预测方法 4.1.1. 预测方法分类 4.1.2. 预测方法准确性和误差来源 4.2. 使用聚类技术进行太阳辐照度预测 4.2.1. 聚类预测模型描述 4.2.2. 预测模型的时间序列准备 4.2.3.太阳辐射的标准化和聚类
随着我们即将进入 21 世纪的第一个季度,我们见证了基因组工程新时代的到来,这是一门重写生命系统遗传密码的科学。最近批准的 Casgevy(exagamglogene auto-temcel)就是最好的例证。Casgevy 是一种用于治疗镰状细胞病的细胞基因疗法,利用 CRISPR-Cas9 来增强胎儿血红蛋白的产生,这是自该技术首次突破性地应用于真核细胞基因组编辑以来,在不到十年的时间里取得的一项了不起的成就。临床实施时间如此之短,不仅强调了基于 CRISPR-Cas 的方法在解决以前难以解决的生物医学问题方面具有巨大的威力,而且强调了基因组编辑在未来几十年对科学和工程产生巨大影响的潜力。然而,尽管推动了第一波成功的惊人进步,但仍然迫切需要更强大、更灵活、更精确、更安全的基因组工程工具。这种需求的部分原因是,最早几代靶向基因组编辑器依靠 DNA 双链断裂 (DSB) 进行编辑,而这一过程不仅可能导致目标 DNA 序列中大量无效修饰,而且还存在引发染色体碎裂和其他染色体畸变的严重风险。尽管如此,现在出现了新的和改进的技术,能够以更高的精度和更少的附带影响来修改 DNA,其中碱基编辑器 [ 1 ]、先导编辑器 [ 2 ] 和基于重组酶/整合酶的系统 [ 3 ] 就是三个这样的例子。本期特刊中的文章重点介绍了这一快速发展领域的这些进展和其他进展,该领域的发展部分受到对 DNA 修复机制认识的提高、用于表征编辑结果的复杂方法的开发以及用于构建更好的基因组编辑器的新方法的创造的催化。例如,虽然基因编辑工具是修改目标 DNA 序列过程的基础,但在大多数情况下,细胞 DNA 修复机制才是促成改变本身的原因。因此,基因组工程师越来越需要详细了解各类编辑器触发的 DNA 修复机制。考虑到这一点,Gvozdenovic 等人回顾了目前关于最相关的 DNA 修复途径的知识
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
近年来,随着激光应用的不断发展,科学家们对新型激光光束理论与实验的研究产生了浓厚的兴趣。其中,中心强度为零的暗空心光束由于其在原子光学、量子光学、二元光学、微观粒子操控、激光显微成像等领域的广泛应用而受到越来越多的关注。这类光束一般具有特殊的螺旋相位波前结构。本研究利用SLM产生任意阶数、任意拓扑荷的涡旋光,并讨论了SLM在应用中面临的诸多问题。由于SLM的相位调制在理想条件下是不畸变的,但在其制造过程中,其光调制部分不可避免地会产生微小的畸变和缺陷。事实上,这些畸变会给实验结果带来很大的误差。为了消除这种误差,本文提出了一种校正SLM误差的方法。首先对其畸变相位进行精确测量,然后对其进行校正。并以涡旋光束的发生为例,验证了校正效果。关键词:涡旋光束 计算全息图 空间光调制器 1.引言 利用传统的光学系统获取涡旋光束存在着装置复杂、调节困难等一系列问题[1] 。然而,利用空间光调制器(SLM)中的计算全息图很容易实现光束的转换。SLM 是对光束施加某种形式空间变化调制的物体。SLM 可以根据输入的信息调制光束的相位、偏振面、振幅、强度和传输方向等物理参数。只有改变输入信息,计算机才能控制 SLM 的参数。用 SLM 代替传统光学系统,可以轻松解决上述问题。用 SLM 代替传统光学系统,可以轻松解决上述问题。2007 年,Yoshiyuki Ohtake [2] 等人 [3] 在空间光调制器(SLM)中提出了一种基于空间全息图的涡旋光束转换方法。利用SLM产生径向折射率p和角折射率l分别为5阶和1阶的LG(拉盖尔高斯)光束,并实现可编程相位调制。利用计算机模拟LG光束在传输过程中的光强分布。本文利用反射式SLM产生3种涡旋光束、贝塞尔光束、LG光束和HyG(超几何)光束,利用干涉法验证它们的涡旋量和拓扑荷。通过数值计算对HyG光束进行理论模拟,并将模拟值与实验值进行比较,分析了误差。由于制造工艺的原因,SLM表面会存在细微缺陷,因此使用SLM会造成调制相位畸变。本文提出了一种测量和校正SLM畸变相位的方法。2.理论描述2.1贝塞尔光束沿z方向传输的BG光束的场分布可表示为[3]:
Supplementary methods and results HARMONY data quality gate The minimal essential data to be registered in the HARMONY Big Data Platform were unique patient record identifier, diagnosis date, year of birth, protocol code, randomization arm, gender, transplant eligibility, death occurrence, treatment discontinuation, date of the last follow-up, time-to-progression (TTP) event, TTP date, TTP in months, progression-free survival (PFS)事件,PFS日期,几个月中的PFS,总生存期(OS)事件,OS日期和OS(以月为单位)。对上述变量的数据不完整的患者未包括在Harmony Big Data平台中,因此未包括在此分析中。根据血清β2-微球蛋白和白蛋白水平,定义了分析中包含的特征(ISS I,II,III)的阶段(ISS I,II,III)。1血清乳酸脱氢酶(LDH)。正常(ULN)范围的上限由当地实验室定义。高LDH定义为> ULN;正常LDH为≤uln。根据ISS阶段,将修订后的ISS(R-IS I,II,III)的阶段定义为先前所述的高风险CA [定义为DEL(17p)缺失中至少存在一个(t(4; 14; 14)(p16; q32; q32)易位,and和/或t(14; 16; 16; 16; 16)(q32; q23; q23)转换级别。2东部合作肿瘤学组绩效状态(ECOG PS)在诊断多发性骨髓瘤(MM)时评估了医生。通过免疫固定在基线时评估了骨髓瘤特异性单克隆蛋白的重链同种型。肌酐清除是根据肾脏疾病(MDRD)配方中饮食的修饰计算的。3比较以下风险因素:IS阶段(II vs.i,iii vs.i,不可用[na] vs.i); LDH(>正常[ULN]与≤uln的上限,Navs.≤uln); del(17p)(是的,是否,na vs.否); t(4; 14)(是的,否,na vs. no); 1q增益/扩增([1Q+],是,是vs. no,na vs. no); t(14; 16)(是的,否,na vs. no);东部合作肿瘤学组绩效状态([ECOG PS],> 1vs.≤1,Navs.≤1); 4重链同种型(Iga vs.非IGA,NA与非IGA); 5和肌酐清除率(≤45vs.>> 45 ml/min,na vs.> 45 ml/min)。6个染色体异常分析是通过少数欧洲实验室的原位杂交(FISH)进行的。尽管存在劳动层间的可变性,但对使用免疫磁技术获得的纯化的浆细胞进行了所有分析,并且通常在每个多个骨髓瘤(MM)面板中包括DEL(17p),T(4; 14),1Q+和T(14; 16)的分析。值得注意的是,尽管截止水平并不相同,但它们非常相似,数值畸变的范围从10%到20%,而IGH易位的差距从10%到15%。英国国家癌症研究所(UK NCRI)骨髓瘤XI试验的易转液和拷贝数变化通过实时定量逆转录聚合酶链反应(QRT-PCR)和多重连接依赖性探针扩增(MLPA)(MLPA,MLPA),对FISH验证的技术,通过实时定量逆转录聚合酶链反应(QRT-PCR)进行集中分析。7在国际分阶段系统(R2-ISS)得分的第二次修订中的分组策略,为了识别4个风险定义的组,我们根据最高的C-索引
概述此文档解决了Yervoy(ipilimumab)的使用。yervoy是一种重组人细胞毒性T-淋巴细胞抗原4(CTLA-4) - 阻断用于治疗晚期黑色素瘤(皮肤和紫外),肾细胞癌,结肠癌,结直肠癌和非小细胞肺癌的单克隆抗体。食品药物管理局(FDA)批准的Yervoy指示包括治疗不可切除或转移性黑色素瘤。国家综合癌症网络(NCCN)建议,对于不可切除或转移性疾病,可以将Yervoy与Opdivo一起用作一线疗法,或者作为一种药物,或者将OPDIVO用作二线或后续治疗,如果个人患有疾病进展。此外,NCCN表示,Yervoy可以用作某些在先前Yervoy治疗期间没有明显全身毒性的人的单一药物进行重新诱导疗法,并且在稳定疾病后最初的临床反应或稳定疾病后的进展后复发。yervoy被指示与Nivolumab结合使用,用于复发,晚期或转移性非小细胞肺癌(NSCLC)作为一线治疗,用于表达PD-L1≥1%的肿瘤,这些肿瘤为EGFR,ALK,ROS1,BRAF负。NCCN为PD-L1 <1%的肿瘤提供了另外的2A类建议。Yervoy与Nivolumab和2个铂二键疗法的2个周期结合使用,FDA表示对于没有EGFR或ALK基因组肿瘤畸变的患者,用于对复发或转移性NSCLC的第一线治疗。如果没有足够的组织来对所有这些标记进行测试,则应重复活检和/或血浆测试。NCCN面板建议在启动第一线治疗之前对NSCLC的患者进行可起作用的分子标记,例如EGFR,ALK,ROS1,BRAF,NTRK,NTRK,MET和RET突变,以帮助指导治疗。如果这些不可行,则由可用结果指导治疗,如果未知,这些患者就会像没有驾驶员的癌基因一样对待。yervoy也被批准为对皮肤黑色素瘤的个体的辅助治疗,具有超过1 mM的区域淋巴结的病理学受累,这些淋巴结已完成,包括全面切除,包括总淋巴结清扫术。最近,对Yervoy在另一种形式的转移性黑色素瘤中的使用越来越兴趣。NCCN提供了2A建议,用于将Yervoy用作单一药物或与Opdivo结合使用,以治疗不可切除或转移性紫veal黑色素瘤。Yervoy具有FDA批准的指示,可与Opdivo结合使用,用于治疗中等或贫穷的先前未经治疗的晚期肾细胞癌(RCC)的个体。NCCN包括2A建议,将使用Yervoy与Opdivo结合使用,作为治疗晚期透明细胞RCC的后续治疗。NCCN还提供了2A建议,可与Opdivo结合使用,用于具有先进的清除电池RCC的有利风险组,但指出了I和III阶段的临床试验数据支持此用途的结果显示出矛盾的结果。NCCN提供了2A建议,用于使用Yervoy与Opdivo结合使用MSI-H或DMMR转移性结直肠癌的个体,作为未接受任何以前化学疗法的个体的主要治疗方法。yervoy具有FDA批准的指示,可与Opdivo结合使用,以治疗微卫星不稳定性高(MSI-H)或错配维修缺乏(DMMR)转移性结直肠癌(CRC),可在用氟吡啶胺,催产素和Irinotecan进行治疗后进展。NCCN包括与Opdivo结合使用的2A建议,作为基本转移(仅DMMR/MSI-H)的主要治疗方法(在过去的12个月内)和先前的辅助氟尿嘧啶,leucovorin,leucovorin和oxaliptin(folfox)或Capecitabine和Oxaliptin(Capeox)。