随着石化、采矿、制药、纺织、金属加工和食品工业的需求不断增长,也增加了因石油和石油源污染物而浪费水的风险。[1] 此外,石油勘探和开采、炼制和运输过程中的漏油事件对水污染构成了高度威胁。[2,3] 人们开发并使用了各种方法来处理油污染水,包括机械分离、化学处理、生物处理、膜过滤和吸附。[4–6] 在所有这些方法中,通过工程表面吸附油来清理油是由于其易于使用、去除效率高、成本低以及环境友好而最受欢迎的方法。[7] 用于清理油的理想吸附剂材料应同时具有高疏水性和亲油性。 [8] 不同类型的具有这种双重润湿性(同时表现出疏水性和亲油性)的材料已被提出用于选择性吸附
谷氨酸转运蛋白通过调节兴奋性神经发射器水平(涉及多种神经系统和生理疾病)时,通过调节兴奋性神经发射器水平来在神经生理中起关键作用。然而,由于它们在细胞内脑中的定位,包括谷氨酸转运蛋白在内的整合跨膜蛋白仍然难以研究。在这里,我们介绍了通过QTY代码产生的谷氨酸转运蛋白及其水溶性变体的结构生物信息学研究,这是一种基于系统氨基酸取代的蛋白质设计策略。这些包括由X射线晶体学,Cryo-EM确定的2种结构,以及6个由Alphafold2预测的结构及其预测的水溶性数量变体。在谷氨酸转运蛋白的天然结构中,跨膜螺旋含有疏水氨基酸,例如亮氨酸(L),异亮氨酸(I)和苯丙氨酸(F)。为设计水溶性变种,这些疏水性氨基酸被系统地取代了亲水性氨基酸,即谷氨酰胺(Q),苏氨酸(T)和酪氨酸(Y)。数量变体表现出水溶性,其中四个具有相同的等电聚焦点(PI),而其他四个具有非常相似的PI。我们介绍天然谷氨酸转运蛋白及其水溶性数量变体的超塑结构。尽管有明显的蛋白质跨膜序列差异(41.1% - > 53.8%),但与RMSD0.528Å-2.456Å相似,表现出与RMSD0.528Å-2.456Å的显着相似性。此外,我们研究了天然谷氨酸转运蛋白及其QTY变体之间疏水性斑块的差异。经过仔细检查,我们发现了这些转运蛋白中的L-> Q,i-> q,i-> t,i-> t,f-> y和q-> l,t-> i,y-> f的多种自然变化。其中一些自然变异是良性的,其余的是在特定的神经系统疾病中报告的。我们进一步研究了疏水性在谷氨酸转运蛋白中疏水性取代的特征,利用了变体分析和进化分析。我们的结构生物信息学研究不仅提供了疏水螺旋之间差异的见解
摘要 - 石墨烯的进步在探索其用于不同应用程序的属性方面产生了需求。探索其特性的一种方法是降低其疏水性。为了克服石墨烯的疏水性,表面活性剂已用于功能化,从而改善了石墨烯单层的表面特性。因此,研究CVD石墨烯的表面活性剂处理对于理解石墨烯的表面特性影响很有用。这项研究利用硅底物上的CVD石墨烯。在不同的治疗时间内,用不同浓度的巧克力(SC)进行处理。然后,使用原子力显微镜(AFM)对这些样品进行表征,以研究处理前后样品的表面特性。要优化,石墨烯必须保持在硅底物上。结果表明,基本上是SP 2结构的石墨烯的完整性,因为即使在处理SC溶液的重量/体积浓度为1%的重量/体积浓度下,底物也没有分层。
许多研究表明,激光纹理化之后,新处理过的金属表面由于存在微/纳米结构而呈现亲水或超亲水状态[3–5]。当激光纹理化表面较长时间暴露在环境空气中时,可以观察到润湿性从超亲水性转变为超疏水性[5–10]。因此,激光纹理化的金属表面在环境条件下储存时可实现超疏水性。不同金属的转化时间不同。例如,经纳秒激光纹理化的铜或黄铜需要大约 11–14 天才能变为超疏水[11,12]。Jagdheesh 等人[13]报道,激光烧蚀铝的润湿性转化需要大约 40 天。而飞秒激光烧蚀不锈钢的润湿性变化比其他金属需要更长的时间(52–60 天)[14,15]。
食用油,从植物和动物来源提取,已发展成为一个价值数十亿美元的产业,并且每年都有新的应用。2018 年,全球消费和利用了超过 5.8205 亿公吨的食用油。生物柴油、药物配方应用、肥皂、洗发水和家用清洁剂等产品就是其中的几例。近年来,食品行业一直在寻求加入营养价值更高的新油,但结果往往不明确。油的疏水性通常会使 C18 固定相的分析变得困难,因为选择性有限。在本技术报告中,我们通过 LCMS 生成了四种常见食用油(包括玉米油、椰子油、菜籽油和葡萄籽油)的 TAG 谱,以展示具有独特固定相的 HALO ® C30 色谱柱如何提供卓越的特异性和更高的形状选择性。从而能够更好地分离疏水性长链分子,例如 TAG。
SMT-G 过滤器可为压缩空气、氮气和其他气体提供可靠、高效且经过验证的过滤和灭菌。其过滤介质由单层褶皱固有疏水性 PTFE 膜和支撑层组成,这些支撑层集成在坚固的笼子中,笼子带有加固芯和端盖,适合苛刻的操作和清洁条件。
目的:自乳化药物输送系统 (SEDDS) 具有巨大的潜力,尚未完全实现。它们可用于配制口服脂质给药中水溶性低的药物化合物,并克服与这些化合物相关的许多问题。由于 SEDDS 粒径小、表面积大、包封率高、药物载量高,它可以通过优化药物在肠道吸收部位的溶解度来提高口服吸收的速度和程度。此外,由于其基于脂质的配方,SEDDS 可以加速和增加药物淋巴转运,绕过肝脏首过代谢,从而提高生物利用度。结果与讨论:由于创新的药物开发方法,具有疏水性的新型治疗有效亲脂性分子的数量稳步增加。药物研究的未来可能不仅要发现新的分子,还要更好地利用已知的分子。在提高疏水性和亲脂性药物分子口服生物利用度的策略中,使用 SEDDS 已被证明能非常成功地提高这些化合物的口服生物利用度。关键词:药物溶解度、乳化剂型、亲脂性药物、自乳化、自乳化递送系统
杜拉斯莱克是一种陶瓷涂层,既是疏水又是含水量的。duraslic集成了在应用时形成的三个功能层。在底物界面上,杜拉斯莱克具有化学结合底物的纳米厚层。上面是一个陶瓷层,可增加硬度,耐化学性,腐蚀和刮擦性。顶部表面赋予疏水性,含油含量和耐化学性。杜拉氏液可以定义为“混合”涂层,结合了陶瓷涂层和纳米涂层的益处。duraslic的独特杂种结构以3种方式起作用:•形成一个密集的与底物的牢固化学键的网络•形成惰性,高性能的粘合剂聚合物层•形成高度疏水性和含水性的杜拉质表面杜拉质表面的独特结构和化学成分,可在许多表面应用于许多表面时阻止正常脱位。这意味着更高的效率,降低维护,更长的寿命以及最终的大量成本节省。杜拉斯利(Duraslic)不仅为表面增添了物理保护,而且还有助于清洁的化妆品外观。