病理疤痕(PS),包括肥厚疤痕(HTS)和乳突,是伤口愈合不良的常见并发症,对患者的生活质量显着影响。目前,PS有几种治疗选择,包括手术,药物治疗,放射治疗和生物疗法。但是,这些治疗方法仍然面临着主要的挑战,例如低效率,高副作用和高度复发风险。因此,尤其紧急寻找更安全,更有效的治疗方法。新材料通常具有较少的免疫排斥反应,良好的组织相容性,并且可以减少治疗过程中的次要损害。新技术还可以降低传统治疗的副作用和治疗后的复发率。此外,新材料和生物材料的衍生产品可以改善新技术对PS的治疗作用。因此,新技术和创新材料被认为是增强PS的更好选择。本综述集中于使用两种新兴技术,微针(MN)和光动力疗法(PDT),以及两种新型材料,即光敏剂和外泌体(EXOS),用于PS的治疗。
被新生巨噬细胞吞噬垂死的细胞引发了一种化学链反应,该反应产生了一种称为势盒A2的分子,该反应意外地刺激了心脏肌肉细胞以繁殖并修复损害。此外,新生儿的附近肌肉心脏细胞还需要对血栓烷A2做出反应,这使他们改变了新陈代谢以支持其生长和愈合。
“传统上,干细胞主要是从骨髓或脐带血中收获的,都是相对难以获取的来源。在2001年,发现脂肪组织不仅包含脂肪细胞,而且还包含间充质干细胞 - 支持在组织损伤的情况下充当干细胞的细胞。这为干细胞疗法提供了更容易获得的替代方法。从那时起,这些干细胞已被研究并用于各种应用,包括神经系统疾病,骨关节炎,疼痛治疗和伤口愈合。”
摘要:少突胶质细胞祖细胞(OPC)代表神经胶质的亚型,引起中枢神经系统(CNS)中的髓磷脂形成细胞(CNS)。虽然OPC在开发过程中具有很高的增殖,但在成年期,它们的命运受到细胞外环境的严格影响,它们变得相对静止。在创伤性损伤和慢性神经退行性疾病中,包括自身免疫原状,少突胶质细胞发生细胞凋亡和脱髓鞘开始。成人OPC立即被激活;它们在病变部位迁移并扩散以补充受损区域,但它们的效率受到神经胶质疤痕的障碍,这主要是由反应性星形胶质细胞,小胶质细胞和抑制性细胞外基质成分的沉积所形成的屏障。一方面,神经胶质疤痕限制了病变的扩散,它也会阻止组织再生。旨在减少星形胶质细胞或小胶质细胞激活并将其转移到神经保护表型的治疗策略已被提出,而OPC的作用在很大程度上被忽略了。在这篇综述中,我们从OPC的角度考虑了神经胶质疤痕,分析其行为时,当病变起源并探索旨在维持OPC的潜在疗法时,以有效地区分和促进remer髓。
我们研究了与动态自旋 1 2 链耦合的 1D Z 2 格子规范理论的量子多体疤痕中的介子激发(粒子-反粒子束缚态),该链作为物质场。通过引入物理希尔伯特空间的弦表示,我们将疤痕态 j Ψ n;li 表示为所有具有相同弦数 n 和总长度 l 的弦基的叠加。对于小 l 疤痕态 j Ψ n;li,物质场的规范不变自旋交换关联函数随着距离的增加呈指数衰减,表明存在稳定的介子。然而,对于大的 l ,关联函数呈现幂律衰减,表示非介子激发的出现。此外,我们表明这种介子-非介子交叉可以通过淬灭动力学检测到,分别从两个低纠缠初始态开始,这在量子模拟器中是实验可行的。我们的研究结果扩展了格点规范理论中量子多体疤痕的物理学,并揭示了非介子态也可以表现出遍历性破坏。
*通讯作者。材料和信件的请求应发给a.d. adeb@mednet.ucla.edu。作者贡献:Y.W.在体外和体内进行了与光遗传学有关的实验,进行了CRISPR-Cas9靶向,并进行了所有相关分析。 B.T.,B.S。和P.W.进行了动物手术,并且记录的LV压力跟踪; S.R.进行了单核测序; F.M分析了核测序数据; Y.G.,A.E。和M.P.协助数据解释和上下文化; Y.K.就光学刺激协议和电记录的解释提供了建议; K.Y.和B.N.有助于记录钙瞬变; M.A进行并设计了单细胞电生理实验; M.A.和R.O.有助于解释和设计耦合实验; Q.L.,Z.S.和Z.Q.设计和执行的计算模拟并分析了模拟结果; A.D.概念化了该项目,设计了所有实验,监督了所有数据收集和光学遗传实验,解释了所有心脏电气追踪,并写了手稿。
Raymond H. Chan,医学博士,MPH; Laurine van der Wal,医学博士;医学博士Gabriela Liberato;医学博士Ethan Rowin;乔纳森·索斯洛(Jonathan Soslow),医学博士;医学博士Shiraz Maskatia;医学博士Sherwin Chan;医学博士Amee Shah;马克·福格尔(Mark Fogel),医学博士;医学博士Lazaro Hernandez;医学博士Shafkat Anwar; Inga Voges,医学博士;马库斯·卡尔森(Marcus Carlsson),医学博士; Sujatha Buddhe,医学博士;医学博士Kai Thorsten Laser;医学博士Gerald Greil; Emanuela ValsangiaComo-Buechel,医学博士; Iacopo Olivotto,医学博士;医学博士Derek Wong;马里兰州柯卢拉·沃尔夫(Cordula Wolf); Heynric Grotenhuis,医学博士;医学博士Carsten Rickers;医学博士Kan Hor;医学博士Tobias Rutz;医学博士谢尔比·库蒂(Shelby Kutty);玛格丽特·萨明(Margaret Samyn),医学博士;蒂法尼·约翰逊(Tiffanie Johnson),医学博士;医学博士Keren Hasbani;杰里米·P·摩尔(Jeremy P. Moore),医学博士;马里兰州Ludger Sievering;乔恩·德特里奇(Jon Deetterich),医学博士;罗德里戈·帕拉(Rodrigo Parra),医学博士;马里兰州Paweena Chungsomprysong;医学博士Olga Toro-Salazar; Arno A. W. Roest,医学博士; Sven Dittrich,医学博士;亨里克·布伦(Henrik Brun),医学博士;约瑟夫·斯宾纳(Joseph Spinner),医学博士; Wyman Lai,医学博士; Adrian Dyer,医学博士;罗伯特·贾布洛诺夫斯克(Robert Jablonowsk),医学博士; Christian Meierhofer,医学博士; Dominik Gabbert博士;米兰PRSA,医学博士; Jyoti Kandlikar Patel,医学博士;医学博士Andreas Hornung;医学博士Simone Goa Diab;马里兰州Aswathy Vaikom House;医学博士Harry Rakowski;医学博士Lee Benson;马里·马龙(Martin S. Maron),医学博士; Lars Grosse-Wortmann,医学博士 div>Raymond H. Chan,医学博士,MPH; Laurine van der Wal,医学博士;医学博士Gabriela Liberato;医学博士Ethan Rowin;乔纳森·索斯洛(Jonathan Soslow),医学博士;医学博士Shiraz Maskatia;医学博士Sherwin Chan;医学博士Amee Shah;马克·福格尔(Mark Fogel),医学博士;医学博士Lazaro Hernandez;医学博士Shafkat Anwar; Inga Voges,医学博士;马库斯·卡尔森(Marcus Carlsson),医学博士; Sujatha Buddhe,医学博士;医学博士Kai Thorsten Laser;医学博士Gerald Greil; Emanuela ValsangiaComo-Buechel,医学博士; Iacopo Olivotto,医学博士;医学博士Derek Wong;马里兰州柯卢拉·沃尔夫(Cordula Wolf); Heynric Grotenhuis,医学博士;医学博士Carsten Rickers;医学博士Kan Hor;医学博士Tobias Rutz;医学博士谢尔比·库蒂(Shelby Kutty);玛格丽特·萨明(Margaret Samyn),医学博士;蒂法尼·约翰逊(Tiffanie Johnson),医学博士;医学博士Keren Hasbani;杰里米·P·摩尔(Jeremy P. Moore),医学博士;马里兰州Ludger Sievering;乔恩·德特里奇(Jon Deetterich),医学博士;罗德里戈·帕拉(Rodrigo Parra),医学博士;马里兰州Paweena Chungsomprysong;医学博士Olga Toro-Salazar; Arno A. W. Roest,医学博士; Sven Dittrich,医学博士;亨里克·布伦(Henrik Brun),医学博士;约瑟夫·斯宾纳(Joseph Spinner),医学博士; Wyman Lai,医学博士; Adrian Dyer,医学博士;罗伯特·贾布洛诺夫斯克(Robert Jablonowsk),医学博士; Christian Meierhofer,医学博士; Dominik Gabbert博士;米兰PRSA,医学博士; Jyoti Kandlikar Patel,医学博士;医学博士Andreas Hornung;医学博士Simone Goa Diab;马里兰州Aswathy Vaikom House;医学博士Harry Rakowski;医学博士Lee Benson;马里·马龙(Martin S. Maron),医学博士; Lars Grosse-Wortmann,医学博士 div>
抽象的肥厚疤痕(HS)是一种斑块斑块和硬性皮肤病变,可能会对患者引起身体,心理和化妆品挑战。三秒乙醇酮(TA)的感染内注射通常在临床实践中使用,这会导致HS组织中难以忍受的疼痛和不均匀的药物递送。在这里,我们开发了一个纸电池驱动的离子电池驱动的微针贴片(PBIMNP),用于HS的自我管理。通过将纸电池作为离子电池的电源来实现PBIMNP的高积分。PBIMNP的透皮药物输送策略合并了微对基和离子噬菌体技术,涉及“按压和戳戳,相变,扩散和离子噬菌体”,可以积极地将90.19%的药物递送到HS组织中,具有出色的体外药物渗透性。PBIMNP给药有效地降低了mRNA和蛋白质水平,导致TGF-β1和Col I与HS形成相关的表达降低,证明其在HS处理中的效率。微针和可穿戴设计赋予PBIMNP,作为HS治疗自我管理的高度有希望的平台。
对手术切口产生的疤痕外观的担忧仍然是投资微创手术的主要动机。在某些医学情况下,需要开放手术程序,因此继续需要减少手术后皮肤疤痕。与临床标准手术刀叶片相比,该项目旨在确定高度抛光的手术手术刀叶片是否会减少组织损伤,随后的炎症和疤痕。使用Duroc Pig手术切口模型比较抛光标准的商业手术叶片在三个级别增强的表面饰面到市售叶片的疤痕。在各个时间点(第5天,第30天和第60天)比较了组之间疤痕形成(区域和宽度)的差异。在每个术后时间点,抛光的叶片显示出明显小的疤痕面积(P <0.05),比相应的对照组(Bard-Parker#15叶片)。此外,我们观察到的抛光叶片的疤痕宽度和宽度方差明显小于第60天(p <0.05)。这种作用的解释与由精细过程产生的手术刀叶片引起的减少组织创伤有关。数据支持以下假设:从极其完成的叶片中的手术切口导致疤痕大大减少。
在以龟草 (Thalassia testudinum) 为主的海湾进行休闲划船活动,导致螺旋桨疤痕高密度区域,可能损害海洋栖息地和生态系统服务。鉴于龟草的生长习性,大量螺旋桨疤痕的形成可能需要长达 10 年的时间才能达到正常密度。通过航空照片解释进行评估,并安装可生物降解的沉积物管,可以促进受影响的龟草床的恢复。Atkins 与佛罗里达州环境保护部 (FDEP) 中央狭长地带水生保护区工作人员合作,完成了一个多阶段修复项目,以评估、绘制地图、量化沉积物损失,并制定/实施修复策略,以解决佛罗里达狭长地带圣约瑟夫湾水生保护区 (AP) 的螺旋桨疤痕影响。支柱疤痕评估基于小型无人驾驶飞行器 (UAV) 获取的 AP 内海草床的高分辨率航空图像。使用照片解释和半自动特征提取软件分析所得图像,以创建支柱疤痕图,并通过广泛的基于现场的签名开发、地面控制以及空间和主题评估进行验证。利用热点分析、量化和分类结果来确定疤痕密度最高的区域,以便进行潜在修复。分析确定了位于 AP 的 11 个目标区域中 789 个潜在候选疤痕,总面积为 1 公顷。AP 修复工作最终在 379 个支柱疤痕中部署了 43,954 个沉积物管,相当于近 40 公里或 0.8 公顷的修复支柱疤痕。