摘要疲劳测试是工程设计过程中的一个重要方面。为了获取有关疲劳强度和寿命的信息,已经开发了测试设备。借助这些设备,可以收集有关组件或材料使用行为的数据。过去几年,HAMK Riihimäki 的学生在自动化工程实验室开发疲劳测试装置。该机器的原理基于可编程逻辑控制器操作的伺服液压元件。本论文包含有关调试此疲劳测试装置及其开发过程的信息。这项工作于 2017 年 2 月开始,一直持续到 5 月底。对夹持机构、伺服液压和方向控制液压阀、PLC 单元及其编程进行了主要修改。作为论文的研究成果,测试单元已投入使用,并能够对薄板部件进行高周轴向疲劳试验。论文还提供了有关未来可能的系统修改的信息,以便收集测试数据。
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
在500–600°C下具有优异比强度的轻质高强度钛合金不仅用于飞机的结构构件、紧固件和发动机部件,还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变和抗氧化等各种性能。主要在飞机领域研究了微观结构、织构、化学成分等对钛合金疲劳性能的影响,通过引入故障安全和损伤容限设计,提高了可靠性。1–3) 最近,正在进行如下所述的停留疲劳研究和利用集成计算材料工程(ICME)一致预测其疲劳寿命的研究和开发。4) 在日本,除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究之外,5、6)还进行了大量针对各自用途所需性能的研究。
钛合金在500~600℃的高温下具有高强度,可用于飞机的结构件、紧固件和发动机部件,此外还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变性和抗氧化性等各种性能。钛合金的微观结构、织构、化学成分等对疲劳性能的影响主要在飞机领域进行研究,通过引入故障安全和损伤容限设计,提高了可靠性。1-3) 最近,正在进行如下所述的停留疲劳研究以及利用集成计算材料工程(ICME)来一致预测其疲劳寿命的研究和开发。4)日本除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究外,5,6)还进行了大量与各自用途所需的性能相关的研究。
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
15. 补充说明 16. 摘要 平均应力是船体结构细节载荷历史和疲劳的重要组成部分。焊接细节尤其如此,其中热点处的拉伸残余应力非常大,接近屈服应力,这可能会缩短结构部件的疲劳寿命。然而,在处理平均应力时,疲劳分析和设计规范和标准中的不同方法之间缺乏共性。因此,这项工作的目标是验证各种方法中采用的模型,寻求在规范中协调这些方法,并制定适当的方法来评估平均应力的影响。这些目标是通过审查平均应力对疲劳强度影响的现有数据并分析可用的疲劳数据来实现的,以便制定适当的方法来评估海洋应用疲劳分析中的平均应力影响。 17. 关键词 平均应力、疲劳模型、残余应力、焊接细节、船舶、设计规范和标准
摘要。这项研究研究了通过摩擦搅拌加工(FSP)的铝 - 氧化铝复合材料的生产,并探讨了机械性能的结果增强。关键重点在于在复合基质中实现Al2O3颗粒的均匀分布,对于优化材料性能至关重要。这些分散的颗粒充当有效的加强剂,阻碍脱位运动和晶界迁移,因此改善了机械属性,例如硬度,强度和耐磨性。实验发现强调了FSP在增强复合材料的各种机械性能方面的功效。值得注意的是,观察到显着改善,包括拉伸强度增加23.56%,硬度增强37.9%,疲劳强度提高了25.5%,耐磨性增加了30.12%。这些结果强调了通过FSP制造的铝 - 氧化铝复合材料的潜力,从而在需要出色的机械性能和耐磨性(例如航空航天,汽车和制造业)的行业中为高性能材料开辟了新的机会。
摘要。本研究探讨了通过摩擦搅拌工艺 (FSP) 利用 ZrB2 增强材料来增强铝基复合材料的制造。实现 ZrB2 颗粒的均匀分布对于优化材料性能至关重要。使用 FSP 添加 ZrB2 纳米颗粒可显着改善铝的各种机械性能。拉伸强度提高了 20.25%,硬度提高了 35.67%,疲劳强度提高了 23.67%,耐磨性提高了 29.45%。这些增强强调了纳米颗粒增强材料在增强铝基体抵抗机械应力和磨损机制方面的有效性。结果证明了基于 FSP 的技术在定制铝基复合材料的机械性能以适应各种应用方面的潜力。这项研究为开发具有增强机械特性的高性能材料的先进制造方法提供了宝贵的见解,促进了铝复合材料技术的进步,以满足需要卓越强度、耐用性和耐磨性的行业的需求。
国防 在过去十年中,在大多数国家(包括发达国家)经济放缓(尤其是在疫情期间)的情况下,印度表现出了显著的韧性和经济增长。除了我们健全的经济政策外,印度的国防准备工作也为边境的和平做出了巨大贡献。这又得益于我们专注于改进国防装备以确保人员安全以及野战炮、迫击炮、自行火炮、榴弹炮、监视系统等作战装备。这些设备的准确性和可靠性完全取决于用于达到所需性能水平的材料和工艺。凭借这些方面的显著进步,印度甚至能够出口国防装备。印度不断研究和开发材料,以抵抗腐蚀、提供高疲劳强度并适用于高速船、航空母舰和潜艇等应用。国防生产现在也遍布私营部门,也在开发非金属材料,如不同的塑料、陶瓷、复合材料和智能材料,以及快速成型等工艺,以加快实施速度。