摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。
摘要:316L 不锈钢是多种关键应用的首选材料,这些应用需要兼具机械强度和耐腐蚀性,例如在生物医学领域。增材制造 (AM) 技术可以为新的设计解决方案铺平道路,但与传统加工路线相比,微观结构、缺陷类型和表面特性存在很大差异,因此评估 AM 材料和组件的长期耐久性至关重要。本文对最近大量研究 AM 316L 疲劳的文献进行了全面回顾,重点对比了不同的 AM 技术与传统工艺,以及加工和后处理方面对疲劳强度和寿命的影响。总体疲劳数据相当分散,但可以清楚地看到疲劳性能对表面光洁度、构建方向和热处理类型的依赖性,以及不同打印工艺的影响。还对文献中提出的不同测试方法进行了批判性讨论,强调需要共享实验测试协议和数据呈现,以便更好地理解疲劳行为和加工参数之间的复杂相关性。
目录 第 1 章 - 一般原则 第 1 节 - 应用 第 2 节 - 符合性验证 第 3 节 - 功能要求 第 4 节 - 符号和定义 第 2 章 - 总体布置设计 第 1 节 - 分舱布置 第 2 节 - 舱室布置 第 3 节 - 通道布置 第 3 章 - 结构设计原则 第 1 节 - 材料 第 2 节 - 净尺寸方法 第 3 节 - 腐蚀附加 第 4 节 - 极限状态 第 5 节 - 腐蚀防护 第 6 节 - 结构布置原则 第 4 章 - 设计载荷 第 1 节 - 总则 第 2 节 - 船舶运动和加速度 第 3 节 - 船体梁载荷 第 4 节 - 载荷工况 第 5 节 - 外部压力 第 6 节 - 内部压力和力 第 7 节 - 载荷条件 第 8 节 - 载荷手册和载荷仪器 附录 1 - 货舱质量曲线 附录 2 - 直接强度分析的标准载荷条件 附录 3 - 疲劳强度评估的标准载荷条件 第 5 章 - 船体梁强度 第 1 节 -屈服校核 第 2 节 - 极限强度校核 附录 1 - 船体梁极限强度
摘要。这项研究显示了基于铝制的复合材料制造(FSP)在基于铝制的复合制造中的革命性潜力。fsp,使用垂直铣床精确执行,制造具有非凡特性的复合材料。参数的细致选择,包括销钉直径,工具倾斜角度和旋转速度,可确保最佳结果。AA 2024基材经历安全粘连,并遵守清洁协议。SEM图像揭示了BN颗粒的同质分散,这对于优化机械,热和电气性能至关重要。将BN通过FSP掺入会导致各种机械性能的显着增强。拉伸强度提高了20.78%,硬度提高了34.44%,疲劳强度提高了23.83%,耐磨性增加了28.28%。这些改进强调了BN通过FSP增强的功效,为先进的复合制造提供了有希望的前景。这项研究体现了BN彻底改变该行业的潜力,为发展具有卓越机械特征的高性能铝制复合材料铺平了道路。
摘要:雾化过程中保护气、金属蒸汽和粉末内部滞留的气体会导致气孔,而气孔会降低激光粉末床熔合增材制造部件的疲劳强度和拉伸性能。通过后处理和反复试验调整加工条件来降低气孔率既费时又费钱。在这里,我们结合机械建模和实验数据分析,提出了一种易于使用、可验证的无量纲气孔率指数来减轻气孔的形成。机械模型的结果经过了独立的实验数据严格测试。结果发现,该指数可以准确预测常用合金(包括不锈钢 316、Ti-6Al-4V、Inconel 718 和 AlSi10Mg)的气孔发生率,准确率为 92%。此外,实验数据表明,指数值越高,气孔数量越多。在四种合金中,AlSi10Mg 最容易产生气孔,其气孔指数值可能比其他合金高 5 至 10 倍。根据结果,我们绘制了气孔图,可在实践中用于选择适当的工艺变量组来减轻气孔,而无需进行实证测试。
INCONEL® 镍铬合金 625 (UNS N06625/W.Nr. 2.4856) 因其高强度、出色的可加工性(包括连接)和出色的耐腐蚀性而被广泛使用。使用温度范围从低温到 1800°F (982°C)。成分如表 1 所示。INCONEL 合金 625 的强度源于钼和铌对其镍铬基质的硬化作用;因此无需进行沉淀硬化处理。这种元素组合还使其对各种异常严重的腐蚀环境以及氧化和渗碳等高温效应具有出色的抵抗力。 INCONEL 625 合金的特性使其成为海水应用的绝佳选择,包括不受局部侵蚀(点蚀和缝隙腐蚀)、高腐蚀疲劳强度、高抗拉强度和抗氯离子应力腐蚀开裂。它用作系泊电缆的钢丝绳、机动巡逻炮艇的螺旋桨叶片、潜艇辅助推进马达、潜艇快速断开配件、海军多用途船的排气管、海底通信电缆护套、潜艇传感器控制器和蒸汽管波纹管。潜在应用包括弹簧、密封件、水下控制器的波纹管、电缆连接器、紧固件、弯曲装置和海洋仪器组件。高拉伸、蠕变和断裂强度;出色的疲劳和
摘要 增材制造 (AMed) 钛产品通常采用电子束熔化 (EBM) 生产,因为在真空环境下可以抑制钛合金表面的氧化。AMed 钛产品的表面粗糙度超过 200 µm Rz,非常粗糙的表面会导致疲劳强度降低。因此,需要后续表面精加工工艺。喷砂是 AMed 金属产品常见的表面平滑工艺之一。它可以降低较大的表面粗糙度,并在表面引入压残余应力。然而,将表面粗糙度降低到几个 µm Rz 是有限的。另一方面,最近发现,通过激光束粉末床熔合生产的 AMed 金属表面可以通过大面积电子束 (LEB) 辐照进行平滑。然而,难以平滑初始表面粗糙度较大的表面,并且表面上可能产生拉残余应力。本研究通过喷砂和 LEB 辐照相结合的方式,实现了 AMed 钛合金 (Ti-6Al-4 V) 的表面平滑和残余应力的变化。通过喷砂和 LEB 辐照相结合的方式,AMed Ti-6Al-4 V 合金的表面粗糙度从 265 µm Rz 显著降低至约 2.0 µm Rz。LEB 辐照降低表面粗糙度的速率随喷砂表面平均宽度的减小而线性增加。平均宽度对 LEB 辐照平滑效果的影响可以通过热流体分析来解释。此外,当 LEB 辐照到喷砂表面时,可以降低 LEB 辐照引起的拉伸残余应力。
1. 简介 激光加工是一种改进所选材料性能和服务特性的先进工艺。激光在材料加工中的可行性和优势取决于它能够以非接触方式向产品表面提供严格剂量和高强度的能量。激光技术可用于加工物体的远程区域和局部区域,且不会对材料产生振动和其他负面影响。这些和其他显著优势为激光加工在当前和未来具有更大的应用潜力。由于其聚焦激光辐射的能量输入极其局部集中,激光材料加工可为加工部件提供比任何其他热源更高的能量密度。因此,激光材料处理不仅可用于激光焊接或切割,还可用于改变材料的物理和机械性能。各种论文和专著 [1-3] 介绍了激光加工物理特性领域的当前成就。许多参考书 [4-6] 详细描述了激光设备在不同生产技术中的应用。研究表明,金属材料的重要特性,如抗拉强度、疲劳强度和耐磨性,都是结构敏感的,也就是说,可以通过激光加工适当改变材料结构来控制。只有少数研究通过控制材料结构的变化来软化材料 [7-10]。即使是“激光退火”这个术语,在文献中,从更广义上讲,是指通过不同持续时间的激光辐射改变固体的结构,通常是指通过纳秒持续时间的激光辐射对半导体结构进行脉冲定向结晶。
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
收稿日期:2017 年 1 月 X 日;修订日期:2017 年 2 月 X 日;接受日期:2017 年 3 月 X 日 摘要 增材制造 (AM) 因其高材料利用率和产品设计灵活性而受到越来越多的关注。WAAM 的特点是能够管理各种金属材料和高沉积速度。然而,它的形状精度低于通过其他 AM 工艺积累的形状精度,并且需要精加工作为后处理。此外,由金属组成的 AM 积累由于反复熔化和快速凝固而具有复杂的热历史。因此,使用 SUS316L 奥氏体不锈钢,其积累的微观结构中会发生树枝状生长。因此,与等粒结构相比,不锈钢的机械性能(例如延展性和屈服强度)是各向异性的。因此,我们在此提出了一种结合线材和电弧增材制造 (WAAM) 和精加工系统的新系统。在该方法中,当熔融金属凝固时,通过旋转工具进行精加工。使用新系统进行实验,以抑制 WAAM 累积产生的各向异性微观结构。作为旋转工具,使用切削工具和摩擦搅拌抛光 (FSB) 工具。进行微观结构观察和 X 射线衍射分析以评估累积的各向异性。使用新系统,可以抑制累积中的枝晶生长。通过将上述同时处理系统应用于 WAAM 沉积的最外层,预计可以通过表面改性提高疲劳强度并简化精加工工艺。 - 关键词:线材和电弧增材制造、定向能量沉积、X 射线衍射分析、精加工工艺、切削、摩擦搅拌抛光