本研究旨在创建帕金森氏病小鼠模型,分析诱导再生肽的有效性,并阐明诱导再生肽在中枢神经系统疾病中的作用机理。这项研究通过开发抑制帕金森氏病进展,探索大脑稳态机制的疾病改良疗法以及发现新的治疗靶点的可能性来为社会和科学做出贡献。 3。作为帕金森氏病小鼠模型的研究方法,创建了小鼠立体定义地注入病理突变(G51D)α-突触核蛋白的原始原纤维(PFF)中,并通过施用诱导再生的肽或车辆来分析。具体而言,重组G51D-α突触核蛋白被纯化,搅拌产生的纤维被超声破坏以创建PFF,并且通过透射电子显微镜或原发性神经元培养给药进行质量评估后,PFF或生理盐是对小鼠Nigra sindia nigra nigra sideia nigra inigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra nigra的施用。 PFF给药后一个月,建立了多种方案,以反复给予再生诱导再生肽或盐水。给药后,随着时间的推移,进行行为测试(转子杆测试和开放式测试),以评估小鼠的行为和运动功能。建模六个月后,使用组织染色分析脑组织,以分析与病理α-突触核蛋白病理学扩散,多巴胺神经元还原的程度和其他机制有关的数据(图1)。除了上述PFF模型外,还将开发出多巴胺神经毒素6-羟基多巴胺(6-OHDA)的有毒帕金森氏病模型,将开发给尼古拉或纹状体,开发出来,并将重新引起毒性毒性毒性的效率和机制评估为2-8周。在此模型中,行为测试是阿哌汀给药测试。
图1。高度致病性的自身反应性CD4阳性T细胞(CXCR6阳性和SLAMF6阴性)表达miR-147-3p,抑制了趋化因子受体CXCR3的表达,并发挥了致病性。
摘要 背景 阿尔茨海默病 (AD) 是导致痴呆的主要原因。目前,尚无有效的 AD 疾病改良治疗方法。孟德尔随机化 (MR) 已被广泛用于重新利用已许可药物和发现新的治疗靶点。因此,我们旨在确定 AD 的新治疗靶点并分析其病理生理机制和潜在副作用。 方法 进行整合已鉴定的可用药基因的双样本 MR,以估计血液和大脑可用药表达数量性状位点 (eQTL) 对 AD 的因果影响。使用不同的血液和大脑 eQTL 数据源进行重复研究以验证已鉴定的基因。使用具有可用全基因组关联研究数据的 AD 标记,我们评估了已建立的 AD 标记之间的因果关系以探索可能的机制。最后,使用全表型 MR 评估了可用药基因对 AD 治疗的潜在副作用。 结果 总体而言,聚合了 5883 个独特的可用药基因;在至少一个数据集(大脑或血液)中鉴定了 33 个独特的潜在 AD 用药基因,并在不同的数据集中验证了 5 个基因。其中,三个先前的用药基因(环氧化物水解酶 2 (EPHX2)、SERPINB1 和 SIGLEC11)在血液和脑组织中均达到显着水平。EPHX2 可能通过影响整个海马体积来介导 AD 的发病机制。进一步的表型范围 MR 分析显示针对 EPHX2、SERPINB1 或 SIGLEC11 的治疗没有潜在副作用。结论这项研究提供了支持针对这三个可用药基因治疗 AD 的潜在治疗益处的遗传证据,这将有助于优先考虑 AD 药物开发。
版权所有©2021 Arbabyazd等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
1 牛津大学精神病学系,牛津 OX3 7JX,英国。2 精准医学人工智能中心。3 牛津大学纳菲尔德人口健康系,牛津 OX3 7LF,英国。4 牛津大学纳菲尔德骨科、风湿病和肌肉骨骼科学系医学统计中心,牛津 OX3 7HE,英国。5 Nxera Pharma UK Limited,剑桥 CB21 6DG,英国。6 布里斯托大学工程数学与技术学院,Ada Lovelace 大楼,布里斯托 BS8 1TW,英国。7 圣安德鲁斯大学医学院,圣安德鲁斯 KY16 9AJ,英国。8 牛津大学纳菲尔德医学系药物发现中心,牛津 OX3 7BN,英国。 9 阿卜杜勒阿齐兹国王大学理学院生物化学系,吉达 21589,沙特阿拉伯。10 阿卜杜勒阿齐兹国王大学医学院临床生物化学系,吉达
摘要背景:阿尔茨海默氏病是一种与两种错误折叠蛋白淀粉样蛋白(aβ)和tau的积累有关的神经退行性疾病。我们研究了它们对神经元活性的影响,目的是评估其个体和综合影响。方法:我们使用全脑动力学模型来发现最佳参数,最能描述β和Tau对局部节点的激发抑制平衡的影响。结果:我们发现,在早期疾病阶段(MCI),β在TAU上明显占优势,而Tau在最新阶段(AD)在β上占主导地位。我们在复杂的神经元动力学中确定了β和tau的关键作用,并证明了使用区域分布来定义AD中大规模脑功能的模型的生存能力。结论:我们的研究提供了对这两种蛋白质之间的动态和复杂相互作用的进一步见解,为进一步研究生物标志物和候选治疗靶标的途径开辟了道路。
抽象背景阿尔茨海默氏病(AD)是痴呆症的主要原因。目前,AD没有有效的疾病修改治疗方法。Mendelian随机化(MR)已被广泛用于重新利用许可药物并发现新颖的治疗靶标。因此,我们旨在鉴定AD的新型治疗靶标,并分析其病理生理机制和潜在的副作用。进行了整合鉴定出的可药物基因的两样本MR,以估计血液和脑可药物可吸毒表达定量性状基因座(EQTL)对AD的因果作用。使用不同的血液和脑EQTL数据源进行了重复研究,以验证鉴定基因。使用具有可用基因组关联研究数据的AD标记,我们评估了已建立的AD标记之间的因果关系以探索可能的机制。最后,使用全现象MR评估了可药物治疗基因的潜在副作用。总体上,汇总了5883个独特的可药物基因。在至少一个数据集(脑或血液)中鉴定了33个独特的AD潜在潜在可鉴定基因,在另一个数据集中验证了5个。其中,三个先前的可药物基因(环氧水解酶2(Ephx2),Serpinb1和Siglec11)在血液和脑组织中达到显着水平。ephx2可以通过影响整个海马体积来介导AD的发病机理。进一步的全现象MR分析显示,靶向EPHX2,SERPINB1或SIGLEC11的处理没有潜在的副作用。结论本研究提供了遗传证据,支持针对三种可药物治疗的潜在治疗益处,这将有助于优先考虑AD药物的开发。
4 孟加拉国格林大学计算机科学与工程系,孟加拉国;humayan.pustcse@gmail.com (MHKR);5 悉尼大学医学与健康学院医学科学学院生物医学科学系,澳大利亚新南威尔士州悉尼;damian.holsinger@sydney.edu.au (RMDH);6 加文医学研究所骨生物学部,澳大利亚新南威尔士州达令赫斯特;j.quinn@garvan.org.au (JMWQ);7 阿达纳阿尔帕尔斯兰土耳其科技大学生物工程系,土耳其阿达纳;egov@atu.edu.tr (EG);8 世卫组织电子卫生合作中心,新南威尔士大学医学院公共卫生与社区医学学院,澳大利亚悉尼;m.moni@unsw.edu.au (MAM);* 通信地址:rezanur12@yahoo.com;