寨卡病毒属于黄病毒科,主要通过受感染的伊蚊传播。2016 年,寨卡病毒感染因其爆发性传播和对发育中胎儿的显著神经系统缺陷而成为全球卫生紧急事件。由于寨卡病毒复发的风险和对流行病学的了解有限,开发安全有效的寨卡病毒疫苗仍然是当务之急。我们设计了一种基于非整合慢病毒载体 (NILV) 的寨卡病毒疫苗,该疫苗编码了当前流行的寨卡病毒株的共识前膜和包膜糖蛋白。我们进一步评估了该疫苗在免疫缺陷和免疫功能正常的小鼠模型中的免疫原性和保护效果。在两种小鼠模型中,一次免疫均可产生强大的中和抗体滴度,并在免疫后 7 天内提供对寨卡病毒攻击的完全保护。这种基于 NILV 的疫苗在免疫小鼠 6 个月后再次接种时也能诱导持久免疫力。总而言之,我们的 NILV 寨卡疫苗通过单剂免疫提供快速而持久的保护,无需额外的佐剂配方。我们的数据表明,这是一种有希望用于紧急情况的寨卡疫苗候选物,并证明了慢病毒载体作为高效疫苗递送平台的能力。
寨卡病毒属于黄病毒科,主要通过受感染的伊蚊传播。2016 年,寨卡病毒感染因其爆发性传播和对发育中胎儿的显著神经系统缺陷而成为全球卫生紧急事件。由于寨卡病毒复发的风险和对流行病学的了解有限,开发安全有效的寨卡病毒疫苗仍然是当务之急。我们设计了一种基于非整合慢病毒载体 (NILV) 的寨卡病毒疫苗,该疫苗编码了当前流行的寨卡病毒株的共识前膜和包膜糖蛋白。我们进一步评估了该疫苗在免疫缺陷和免疫功能正常的小鼠模型中的免疫原性和保护效果。在两种小鼠模型中,一次免疫均可产生强大的中和抗体滴度,并在免疫后 7 天内提供对寨卡病毒攻击的完全保护。这种基于 NILV 的疫苗在免疫小鼠 6 个月后再次接种时也能诱导持久免疫力。总而言之,我们的 NILV 寨卡疫苗通过单剂免疫提供快速而持久的保护,无需额外的佐剂配方。我们的数据表明,这是一种有希望用于紧急情况的寨卡疫苗候选物,并证明了慢病毒载体作为高效疫苗递送平台的能力。
Farber博士研究的重点是免疫记忆,特别着重于人类免疫学。与循环记忆T细胞相比,使用小鼠流感模型在实验室中使用小鼠流感模型的研究导致了肺组织驻留记忆T细胞的鉴定及其介导最佳保护性免疫对病毒攻击的能力。这一发现,非循环T细胞可以提供免疫保护的关键,这是研究人类中大多数人对血液中免疫反应进行表征的人类组织T细胞的基本原理。为此,Farber博士通过与纽约大都会区的器官采购组织Liveonny的长期合作建立了组织资源,使她的实验室可以从人体器官捐赠者那里获得多个组织。该组织资源始于14年前,并能够进行大规模研究,并在人类寿命的多个淋巴样和粘膜组织部位对免疫细胞的高维分析。Farber实验室已定义了粘膜和淋巴器官中T细胞以及其他免疫细胞以及组织特异性适应的组织驻留谱。通过研究来自婴儿和小儿供体的样品,该实验室阐明了粘膜和淋巴结部位中αβ和γδT细胞的组织居住以及γδT细胞的功能成熟,并鉴定出在婴儿肺中如何在婴儿肺中瞬时形成的淋巴样结构提供早期生命的适应性。
激活体液免疫并产生中和抗体的新疫苗平台需要对抗新兴的病原体,包括流体病毒。通过填充免疫细胞的抗原sca剂量将浆液泥浆浆中的高表面积造成抗原摄取,作为生物材料降解,以增强体液免疫力。抗原负载的 - 微凝胶引起了稳健的细胞体液免疫反应,CD4 + T卵泡辅助器(TFH)细胞增加,并长时间生发中心(GC)B细胞与常用的辅助辅助辅助,铝氢氧化铝(ALUM)相当。增加聚合物材料的重量分数会导致材料的增加和抗原特异性抗体滴度优于明矾。用被灭活的流体病毒疫苗接种的小鼠,加入了这种更高度交联的配方中,引起了强烈的抗体反应,并提供了防止高剂量病毒攻击的保护。通过调整物理和化学特性,可以增强辅助性,从而导致体液免疫和防止病原体,利用两种不同类型的抗原材料:个体蛋白质抗原和灭活病毒。平台的灵活性可以使新疫苗的设计能够增强先天和适应性的免疫细胞编程,从而产生和调整高能力抗体,这是一种产生长期免疫力的有前途的方法。
新城疫是由禽副粘液病毒 -1 (APMV-1) 引起的,是一种毁灭性的家禽疾病,在世界许多国家流行。目前已有多种针对该疾病的商业疫苗和方案,在大多数情况下,它们都能提供良好的临床保护。然而,尽管接种了疫苗,但一些国家仍经常出现新城疫病例,包括西非的马里。尽管 APMV-1 只有一种血清型,但迄今为止已发现 18 种不同的基因型。马里使用的疫苗株属于基因型 I(例如 I-2)或 II(例如 LaSota 和 Hitchner B1),而马里最近发现的分离株来自基因型 XVII 和 XVIII。因此,本研究旨在确定马里目前使用的四种疫苗接种方案是否能够保护鸡免受最近从马里分离的基因型 XVIII 菌株(ML008/09)和基因型 IV Herts/33 的攻击。结果表明,在所有使用的疫苗接种方案中,接种疫苗的鸟类均具有临床保护作用,没有 ML008/09 病毒脱落,而用 Herts/33 病毒攻击的鸟类则检测到了病毒脱落。本研究产生的数据将有助于那些在马里新城疫管理和控制领域工作的人们。关键词:禽副粘病毒-1、新城疫、血清学、疫苗、马里。引言新城疫 (ND) 是全球最重要的家禽疾病之一,因为它会给家禽业造成巨大损失。它是世界动物卫生组织 (OIE) 的一种须报告的疾病,在亚洲和非洲的许多国家流行。这种疾病的病原体是禽副粘病毒-1 (APMV-1),也称为新城疫
背景:疫苗的质量在很大程度上取决于与疫苗中的抗原同时应用的佐剂的效果。佐剂增强了疫苗对病毒攻击的保护作用。相反,油性佐剂会在注射动物体内留下油残留物,从而在肌肉中产生局部反应。检查了接种疫苗后小鼠的长期免疫原性。在实验组的油佐剂中,ISA206 或 ISA15 油佐剂保持了最佳的免疫力、保护能力和安全性。目的:本研究筛选了旨在增强口蹄疫 (FMD) 免疫力的佐剂复合物。C 型凝集素或 Toll 样受体 (TLR) 激动剂显示出最高的保护率。方法:通过混合各种已知的油佐剂和可作为免疫原性佐剂的复合物(凝胶、皂苷和其他成分)来制造实验疫苗,并检查对疫苗的增强作用。结果:油包水型(W/O)和水包油包水型(W/O/W)佐剂的免疫效果优于油包水型(O/W),因为O/W型佐剂的油性成分较少,且W/O型残留油量最多,其次是W/O/W型和O/W型。小鼠模型中,肌肉注射保护率高于皮下注射,且在脂肪组织中接种保护作用尤其弱。在猪的免疫反应中也证实了初始免疫反应和长期免疫的持续性。结论:与一般的油佐剂疫苗相比,新型含免疫增强剂的实验疫苗在猪体内产生的免疫反应和安全性更高。
人类健康。公共卫生政策,病毒突变和COVID-19疫苗开发和疫苗接种的多种因素导致新患者和死亡率下降。虽然健康的人可能无症状或在出现症状的数周内康复,但他们也面临长期covid-19疾病的风险(器官损害,这使得很难恢复健康状态或增加疾病风险)(1)。许多调查表明,SARS-COV-2病毒侵入呼吸系统以及许多人体组织和器官,从而损害了它们的活动。在Al-yal等人的研究中。(2)COVID-19的影响包括神经系统疾病,心理健康疾病,代谢疾病,心血管疾病,胃肠道疾病,疲倦,肌肉 - 骨骼不适和贫血。同样,据报道,人胰腺是SARS-COV-2病毒攻击的目标(3)。越来越多的临床观察结果表明,与阴性患者相比,COVID-19阳性患者患糖尿病的风险更大。一项研究强调,用SARS-COV-2病毒感染使糖尿病的风险增加了约40%,在100例患者中会影响约2个(4)。Zhang等人最近的荟萃分析。 (5)报告了Covid-19之后的新发育糖尿病的风险,但该研究仅包括队列研究。 此外,这种不一致也阻碍了我们对它们之间因果关系的理解。 随着新数据可用,需要重新评估Covid-19和新发糖尿病之间的关系。Zhang等人最近的荟萃分析。(5)报告了Covid-19之后的新发育糖尿病的风险,但该研究仅包括队列研究。此外,这种不一致也阻碍了我们对它们之间因果关系的理解。随着新数据可用,需要重新评估Covid-19和新发糖尿病之间的关系。因此,这项荟萃分析中包括了更多的文献,以评估19009年后新发糖尿病的发生率。
疫苗接种在口蹄疫 (FMD) 控制中发挥了重要作用。疫苗接种活动的设计和实施方法各不相同,流行病学信息对于影响最适合每个地理位置的疫苗和疫苗接种策略至关重要。口蹄疫流行地区通常将疫苗接种活动作为常规预防控制政策或减轻疾病影响。目前使用的大多数疫苗都是用化学灭活的全病毒颗粒和合适的佐剂(如单油乳剂和双油乳剂)配制的。通常根据疫苗匹配数据和体外实验的结果选择特定地区最新的菌株作为抗原,然而,如果没有在自然宿主中进行活病毒攻击以及可靠的现场数据,基于疫苗匹配方法的预测通常是不确定的。疫苗选择和成功的疫苗接种活动依赖于对这些疫苗将要使用的地区的流行病学的深入了解,以及获得适当的诊断工具来支持这些活动。灭活疫苗是通过培养大量活病毒来生产的,这需要生物安全水平较高的设施,而且存在病毒逃逸的风险,这可能会阻碍无口蹄疫地区的疫苗生产。此外,用于配制疫苗的抗原灭活不充分可能会导致疫情爆发,因此如果该过程不符合足够的质量标准,残余风险可能会持续存在。无需培养完全传染性病毒即可生产的新一代疫苗可以为这些风险提供解决方案。理想情况下,这些疫苗应保护宿主免受大量口蹄疫菌株的侵害,并提供至少与当前灭活疫苗相同水平的保护。本研究主题的主要目标是收集专注于口蹄疫疫苗和疫苗接种方面的研究,以促进支持实施有助于预防和控制疾病的疫苗接种活动的科学研究。
摘要 - covid-19造成了人类健康灾难。感染Covid-19的人在感染期间和之后也患有各种临床疾病。Boerhavia diffusa植物以其降压活性而闻名。ACE-II抑制剂和钙通道阻滞剂被报道为B. diffusa phytoconstitentents降压活性的机制。各种研究表明,ACE-II是病毒攻击宿主细胞的结合位点。COVID-19治疗通常采用多种合成抗病毒和甾体药物。 因此,其他临床疾病(例如高血压和高血糖)是严重的并发症。 安全有效的药物输送是药物开发过程的主要目标。 covid-19接受各种草药治疗;但是,由于其低效力,它们并未被广泛使用。 许多草药植物和制剂用于治疗19. Covid-19感染,其中B. diffusa是使用最广泛的植物。 当前的研究依赖于在B. diffusa植物中发现具有ACE-II抑制活性的活性植物构成。 因此,它可以用作COVID-19和相关疾病患者的治疗选择。 从报道的文献中选择了B. divfusa植物的不同植物成分。 已经研究了植物成分对ACE-II蛋白的活性。 分子对接和配体 - 蛋白质相互作用计算工具用于内部实验。 liriodenine具有最佳的药物,生物活性和结合评分特征。COVID-19治疗通常采用多种合成抗病毒和甾体药物。因此,其他临床疾病(例如高血压和高血糖)是严重的并发症。安全有效的药物输送是药物开发过程的主要目标。covid-19接受各种草药治疗;但是,由于其低效力,它们并未被广泛使用。许多草药植物和制剂用于治疗19. Covid-19感染,其中B. diffusa是使用最广泛的植物。当前的研究依赖于在B. diffusa植物中发现具有ACE-II抑制活性的活性植物构成。因此,它可以用作COVID-19和相关疾病患者的治疗选择。从报道的文献中选择了B. divfusa植物的不同植物成分。已经研究了植物成分对ACE-II蛋白的活性。分子对接和配体 - 蛋白质相互作用计算工具用于内部实验。liriodenine具有最佳的药物,生物活性和结合评分特征。物理化学,类似药物,水溶性,亲脂性和药代动力学参数用于评估植物成分。这项内部研究旨在找到针对ACE-II的芽孢杆菌芽孢杆菌芽孢杆菌的治疗潜力。靶向ACE-II还显示出对SARS-COV-2的影响。它可以用作设计药物的基本原理,用于感染COVID-19和相关疾病的患者。关键字 - ACE-II蛋白,COVID-19,Boerhavia diffusa,silico Inilico Molecular docking,配体 - 受体相互作用
1918 年流感大流行期间的流行曲线显示,随着新感染人数的减少,控制措施的解除引发了多波疫情复苏 [1]。这表明,由严重急性冠状病毒 2 (SARS-CoV-2) 引起的第二波 2019 冠状病毒病 (COVID-19) 可能在 2020 年秋季出现。与流感季节的融合可能导致易感人群(如老年人和患有合并症的人)的发病率和死亡率显著上升。人们对 SARS-CoV-2 和流感病毒的共同感染,或流感疫苗和 SARS-CoV-2 疫苗之间的相互作用知之甚少。去年的流感疫苗是在 2019 年 SARS-CoV-2 大流行之前接种的,这为检验流感疫苗接种与 COVID-19 发病率和严重程度之间的关联提供了机会。如果重症 COVID-19 患者需要住院治疗、进入重症监护病房 (ICU) 或在住院期间死亡,则认为其预后更差。我们分析了 2020 年 3 月 8 日至 4 月 15 日期间在俄亥俄州和佛罗里达州克利夫兰诊所卫生系统接受 COVID-19 检测的患者 (n = 18,868) [2]。其中,我们排除了 5648 名在 2019 年之前接种过流感疫苗但在 2019 年未接种疫苗的患者,以排除与远程疫苗接种相关的偏见。在剩余的队列中,我们将 2019 年秋季或 2020 年冬季接种了无佐剂流感疫苗的 4138 名患者与从未接种过流感疫苗的 9082 名患者进行了比较 [2]。使用重叠倾向评分加权法来控制 2019 年接种和未接种流感疫苗的患者之间观察到的协变量差异。每个个体的倾向评分是使用表 1 中列出的临床特征协变量通过非简约逻辑回归模型预测的接种流感疫苗的概率。然后应用重叠倾向评分加权法直接比较感兴趣结果的加权组 [3]。所有统计分析均使用 R 版本 4.0.1(R 项目统计计算,维也纳,奥地利)进行。该队列和统计方法的详细描述此前已报告 [2]。人口统计学和临床特征如表 1 所示。与从未接种流感疫苗的人相比,2019 年接种疫苗的人年龄更大、体重指数更高、收入更高(表 1)。接种疫苗的人更有可能是女性和非西班牙裔。他们还报告了更多的合并症,需要更多的药物。两组在进行 SARS-CoV-2 检测时进行的外周血实验室测量也存在显著差异(表 1)。未调整分析显示,接种疫苗的个体 SARS-CoV-2 检测呈阳性的可能性较小(表 1)。在 SARS-CoV-2 检测呈阳性的个体中,2019 年接种过流感疫苗的患者住院的可能性更大。一旦住院,他们更有可能被送入 ICU 并在住院期间死亡。在调整后的分析中,更差的住院结果风险增加与流感疫苗接种无关。使用重叠倾向评分加权,流感疫苗接种与 SARS-CoV-2 感染的发病率无关(调整后的 OR [95% CI]:0.79 [0.62 – 1.00])。在 COVID-19 患者(n = 1434)中,接种流感疫苗(n = 309)不会影响住院风险(调整后的 OR [95% CI]:1.29 [0.72 – 2.31])、ICU 入院风险(调整后的 OR [95% CI]:0.65 [0.22 – 1.79])或医院死亡率(调整后的 OR [95% CI]:0.98 [0.39 – 2.43])。总体而言,我们的分析表明,流感疫苗接种不会增加 COVID-19 的发病率,也不会加重相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗,对冠状病毒免疫病理学中的 Th17 免疫反应和疫苗诱导的免疫增强的影响 [ 5 ] 尚不清楚,需要密切监测。有时,流感疫苗接种或感染后产生的非中和抗体会在异源流感攻击后加剧疾病严重程度。在人类中,2008-2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行或医院死亡率(调整后的 OR [95% CI]: 0.98 [0.39 – 2.43])。总体而言,我们的分析表明,接种流感疫苗不会增加 COVID-19 的发病率或加剧相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(例如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性地收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗对冠状病毒免疫病理学中的 Th17 免疫反应以及疫苗诱导的免疫增强作用的影响尚不清楚,需要密切监测 [ 5 ]。有时,接种流感疫苗或感染后产生的非中和抗体会在异源性流感病毒攻击后加剧疾病严重程度。在人类中,2008 - 2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行或医院死亡率(调整后的 OR [95% CI]: 0.98 [0.39 – 2.43])。总体而言,我们的分析表明,接种流感疫苗不会增加 COVID-19 的发病率或加剧相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(例如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性地收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗对冠状病毒免疫病理学中的 Th17 免疫反应以及疫苗诱导的免疫增强作用的影响尚不清楚,需要密切监测 [ 5 ]。有时,接种流感疫苗或感染后产生的非中和抗体会在异源性流感病毒攻击后加剧疾病严重程度。在人类中,2008 - 2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行