nystagmus经常在眼科实践中看到。nystagmus普通人群的患病率约为每10,000人24 [Sarvananthan,2009年]。生理和病理性神力肌stagmus的表现差异很大。在生理神经stagmus中,眼球震颤的缓慢阶段最小化了视网膜图像滑移。相比之下,在病理性的眼球震颤中,病理性眼球震颤的缓慢阶段引起视网膜图像滑移。每秒大于5度的视网膜图像滑移会导致视力下降;由于感兴趣的对象的图像不再在中央凹上,从而导致振荡。[Thurtell,2011年,Demer,1993] oscillopsia是一种感觉,即周围环境实际上是静止的。至通常是影响眼动或眼睛稳定图像的能力的症状,尤其是在运动过程中。这些振荡也会引起视觉症状,例如阅读困难,因为它们将目光偏离目标,因此感兴趣的对象的形象不再位于中央凹上。[Demer,1993]
深部脑刺激是一种公认的治疗方法,据信它可以减少病理回路功能,使患有特定神经系统疾病的患者受益。另一方面,光遗传学方法能够对多种脑部疾病的动物模型中的神经回路功能进行有力的研究。OptoDBS 2015 将讨论 DBS 当前疗法的最新进展,并探讨如何更好地了解病理中的神经回路功能障碍,从而激发新的治疗方案。会议将特别强调 DBS 的新适应症,例如强迫症 (OCD)、抑郁症或成瘾症。前沿的光遗传学演示将与顶尖专家的临床研究交替进行。此次会议还将作为日内瓦大学医学院一项倡议的启动仪式,旨在促进 DBS 和光遗传学的研究。我们非常感谢 Assura 集团的 Divesa 基金会、Carigest SA 和日内瓦学术协会的慷慨支持,这让我们能够举办一场邀请杰出演讲嘉宾的会议。本次会议被瑞士州立兽医协会认定为为期一天半的动物实验继续教育。组织者:Pierre Pollak(日内瓦大学 - 日内瓦大学医院)Christian Lüscher(日内瓦大学 - 日内瓦大学医院)
1)Hattori N,Funayama M,Imai Y等人:PAR -Kinson病的发病机理:从单基因家族性PD到生物标志物的提示。J神经传输(维也纳),2024年2)Funayama M,Ohe K,Amo T等:常染色体显性后期 - 发病帕金森氏病中的CHCHD2突变:GE -NOME - 广泛的链接和测序研究。柳叶刀神经14:274 - 282,2015年3月3日)Kitada T,Asakawa S,Hattori N等:PAR中的突变 - 亲属基因引起常染色体隐性膜肌parkinsonism。自然392:605 - 608,1998 4)Oji Y,Hatano T,Ueno Si等人:Saposin d do中的变体 - 与帕金森氏病有关的Prosaposin Gene的主要基因。Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。 Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals. Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。 MOV DISORD 38:2249 - 2257,2023 8)Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals.Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。MOV DISORD 38:2249 - 2257,2023 8)
认知技术被称为新型人工智能,根据 Davenport 和 Ronanki (2018) 的说法,它将彻底改变商业世界。根据 Davenport 和 Ronanki 的研究,35% 的受访经理认为人工智能将使他们能够做出更好的决策。“有必要对工作流程进行系统性重新设计,以确保人类和机器能够增强彼此的优势并弥补弱点”(Davenport & Ronanki,2018,第 9 页)。然而,作者并未说明这一切将如何实现,以及管理者如何将这些工具融入到他们的工作中。事实上,许多研究人员和管理人员都承认技术为组织决策过程的质量带来了好处,以及信息和通信技术 (ICT) 提供的支持,这尤其要归功于近年来人工智能的进步。有些人甚至希望很快看到人工智能为管理者自己做决策(Davenport & Ronanki,2018;Duan 等人,2019)。鉴于 Ackoff 提出的一些要素,人们可能会认为,管理者的决策将得到越来越多的支持,甚至有一天,管理者可能会被人工智能“取代”在组织中执行决策任务。相反,其他作者建议,我们应该寻求利用基于人工智能的 BI 工具来表达管理者的独特能力,例如他们的直觉。对他们来说,这将允许将人类思维、认知偏见和启发式方法带回来(Gigerenzer & Gaissmaier,2011),可能在决策算法本身中,或者至少通过互补的决策过程(Gilboa 等人,2018 年)。
本文关注的是货币政策的作用,并认为积极的货币政策可以影响实际产出的行为,尽管存在理性预期。构建了一个具有重叠劳动合同的理性预期模型,每个劳动合同为期两个时期。这些合同为模型注入了短期工资粘性的元素。由于货币当局改变货币存量的频率比重新谈判劳动合同的频率高,并且考虑到劳动合同的假定形式,货币政策能够影响产出的短期行为,尽管它对长期产出行为没有影响。
摘要:本文介绍了一种预测云量对光伏 (PV) 场在预测期内影响的新方法,该方法利用 PV 板作为传感器,结合物理和持久性模型并集成储能系统控制。所提出的方法需要模拟由 22 kV 可再生能源和储能组成的电网,从而能够评估与国家电网相比的网络行为。为了优化计算效率,作者开发了 PV + 储能模块的等效模型,在考虑天气条件(尤其是云量)的同时准确模拟系统行为。此外,作者介绍了一种控制系统模型,该模型能够有效响应网络动态并使用 PID 控制器对储能系统进行全面控制。精确的电力预测对于保持电力连续性、管理整个电力系统的爬坡率以及确保电网稳定性至关重要。我们的方法能够与太阳能围栏系统集成,这证明了其创新性及其对可再生能源领域做出重大贡献的潜力。作者还评估了各种针对电网的情景,以确定它们对电网稳定性的影响。研究结果表明,储能与所提出的结合物理和持久性模型的预测方法的集成为有效管理电网稳定性提供了一种有希望的解决方案。
摘要:口腔共生微生物发挥着非常重要的功能,例如有助于宿主的健康。然而,口腔微生物群在各种口腔和全身疾病的发病机制和发展中也发挥着重要作用。口腔微生物群的特点可能是,在使用可拆卸或固定假牙的受试者中,某些微生物的流行率高于其他微生物,这取决于口腔健康状况、使用的假牙材料以及假牙制造不当或口腔卫生不良造成的任何病理状况。可拆卸和固定假牙的生物和非生物表面都很容易被细菌、真菌和病毒定植,这些细菌、真菌和病毒可能成为潜在的病原体。假牙佩戴者的口腔卫生通常不够充分,这可能导致口腔菌群失调,以及微生物从共生菌转变为病原菌。根据本综述的结果,牙齿和植入物上的固定和可拆卸假牙容易被细菌定植,并可能导致菌斑的形成。执行假体产品的日常卫生程序、设计假体以方便患者的家庭口腔卫生习惯以及使用抗牙菌斑积聚或能够减少口腔菌群失调的产品来改善患者的家庭口腔习惯至关重要。因此,本综述主要旨在分析健康和病理性口腔条件下固定和可拆卸种植体或非种植体支持假体佩戴者的口腔微生物组组成。其次,本综述旨在指出相关的牙周自我护理建议,以预防固定和可拆卸种植体或非种植体支持假体佩戴者的口腔菌群失调并维护牙周健康。
治疗方法(作用机制) 1)抑制产生毒性蛋白质的DNA/RNA(ASO、shRNA等)⇒Tofersen,一种用于治疗ALS的ASO(FDA于2023年批准) 2)编辑异常的DNA/RNA使其正常化(CRISPR系统,一项诺贝尔奖获奖技术)⇒镰状细胞病/β-地中海贫血的体外基因组编辑疗法(MHRA于2023年批准) 3)将DNA/RNA引入细胞以补充(过度表达)缺失的蛋白质⇒使用AAV9过度表达用于SMA的正常SMN基因(PMDA于2020年批准)