许多有毒物质和危险化学品都以各种液体、气体和固体形式存在。无论是军事、执法还是民用,显然都需要在安全距离内准确、快速地检测化学品。2008 年,Block Engineering(又名 Block MEMS)从陆军获得了一项小型企业创新研究 (SBIR) 合同,以开发用于超灵敏有毒化学品检测的微机电系统 (MEMS) 增强型激光光谱仪。其基本概念是使用激光在远处、空气中或表面上检测痕量化学品。Block 的三种主要产品 LaserTune TM 、LaserSense TM 和 Laser Warn TM 是专门针对研究机构、原始设备制造商 (OEM)、石油和天然气行业以及军事和
avaxim®和Avaxim®少年疫苗在每种0.5 mL剂量中含有10微克苯丙氨酸,60千克人的剂量相当于0.17微克/kg。苯丙氨酸可能对苯基酮尿症(PKU)的个体有害。疫苗中的量不太可能对PKU的个体产生不利影响,但应告知它们Avaxim®(或Avaxim®Junior)疫苗含有10微克苯丙氨酸。这些人将精通他们可以忍受的饮食量。如果有的话,请提供替代疫苗;由于Havrix®monodose®还具有痕量氨基酸,因此VAQTA®将是首选的选择。另外,请寻求专家内分泌学家或代谢医生的建议,以照顾PKU的个人,以确认他们满足于他们拥有Avaxim®或Avaxim®Junior的适用。
在这项工作中,我们建立了有限的两维光子结构的批量边缘对应原理。特别是,我们专注于具有周期性系数的发散形式运算符,并证明了众所周知的Gap Chern Number(散装不变性)和通过痕量公式定义的,用于将操作员限制在具有Dirichlet边界条件的限制域的轨迹公式。我们证明了边缘指数表征电磁沿系统边界的循环,而BEC原理是能量保护的结果。证明利用绿色功能技术,这些技术放松了基础结构上的平滑性要求,并且可以扩展到其他系统。这些结果为使用有限的几何形状设计可靠的拓扑光子设备提供了严格的理论基础,从而补充了离散模型的最新进步。
引言自2018年起,美国FDA和其他国家的监管机构已警告某些原料药和产品中存在N-亚硝胺杂质。亚硝胺(NSA,见表1)是有毒化学物质,其中一些例如NDMA和NDEA被归类为可能的人类致癌物。NDMA和NDEA首次发现存在于血管紧张素II受体阻滞剂(ARB),如氯沙坦等原料药和产品中。在雷尼替丁和二甲双胍药品中发现了NDMA,由于NDMA含量超过可接受摄入量限值(AI,96 ng/天),因此产品被召回。利用高灵敏度和选择性的GC-MS、LC-MS/MS [1]和LC-HRMS [2-4]质谱方法,可以对药品中痕量NDMA和其他有关亚硝胺进行检测和定量。
1。根据电池充电器测试的单位能量消耗,测试只有1槽电荷的PS30 Plus。2。PS30加上室内扫描配置文件和3500 mAh电池的设备。3。可以从第一个日期出售的第一个日期提供10年的救生员和Zebra Onecare™支持。4。用3500 mAh电池和一个1槽摇篮以快速充电模式为PS30加设备充电15分钟。5。通过3500mAh电池和快速充电模式为1%的电池充电PS30加设备从0%到90%。6。所有来自斑马的电子产品都可能在IEC 62474危险物质清单上包含其他痕量的化学品。7。PS30不能正式注册,因为它不适合Epeat支持的任何产品类型。8。将PS30 Plus的UEC测试结果与PS20进行了比较。
职位概述:这是一个非常负责任的专业技术职位。工作包括对痕量证据进行复杂的技术性科学分析。员工还担任领头人,培训其他犯罪学家和实验室技术人员。工作包括准备报告、制定实验室程序、在法庭上作证、指导他人收集和分析证据以及维护和修理实验室设备。工作在既定程序和政策框架内以相当大的独立性进行。职责描述:(任何一个职位可能不包括列出的所有职责,列出的示例也不包括此类职位中可能出现的所有任务。)参与痕量证据部分的能力测试计划。审查和更新学科内的标准操作程序、培训、质量控制和安全手册等。定期在法庭上作为专家证人作证,同时在激烈的盘问下保持冷静和客观。经常处理各种潜在危险材料(例如 HIV 或肝炎污染的生物证据)。维护报告文件;根据任务要求发布定期和特别报告。操作标准办公设备(即个人电脑、电话、传真机、复印机、计算器等)。根据需要进行与工作相关的旅行。根据任务要求执行其他相关职责。根据需要进行基本摄影。定期处理、比较和检查痕迹证据(例如头发和纤维、枪击残留物、火灾碎片、爆炸物、油漆、玻璃、土壤、灯丝、断口火柴和异物)。根据需要参与犯罪现场调查,并培训其他犯罪学家使用的方法。根据所提交样本的数量和质量决定适当的测试方法。评估所提交的证据,以确定哪些物品最有可能将受害人或嫌疑人与犯罪现场联系起来或分开。使用化学测试、偏光显微镜和化学仪器分析样品,包括气相色谱/质谱、红外和拉曼光谱、扫描电子显微镜/能量色散 x 射线光谱和 x 射线荧光。
摘要:人们普遍认为溶解有机物 (DOM) 可以控制环境中痕量金属的溶解度和反应性。然而,控制金属-DOM 络合的机制仍然不清楚,主要是因为在组成 DOM 的复杂有机化合物混合物中分离和定量金属-有机物种的分析难度很大。本文,我们描述了一种使用液相色谱在线电感耦合等离子体质谱 (LC-ICP-MS) 对有机-金属络合物进行定量分离和元素特异性检测的方法。该方法实施柱后补偿梯度以稳定整个 LC 溶剂梯度中的 ICP-MS 元素响应,从而克服了实现 LC-ICP-MS 定量准确度的主要障碍。通过外部校准和内部标准校正,该方法得到的有机-金属络合物浓度始终在其真实值的 6% 以内,无论络合物的洗脱时间如何。我们利用该方法评估了四种固定相(C18、苯基、酰胺和五氟酰基苯基丙基)对苏旺尼河富里酸和苏旺尼河天然有机质中环境相关痕量金属(Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb)回收率和分离率的影响。C18、酰胺和苯基相通常可获得最佳的金属回收率(除 Pb 外,所有金属的回收率均 > 75%),其中苯基相分离极性物质的程度大于 C18 或酰胺相。我们还对氧化和还原土壤中有机结合的 Fe、Cu 和 Ni 进行了分馏,揭示了土壤氧化还原环境中金属-DOM 形态的不同。通过对 DOM 结合金属进行定量分馏,我们的方法为加深对整个环境中金属-有机络合物的机理理解提供了一种手段。■ 引言