。CC-BY 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)的预印版本的版权所有者,该版本持有人于2025年2月13日发布。 https://doi.org/10.1101/2025.02.08.25321936 doi:medrxiv preprint
积极的情绪是指一个情感家庭,其中包括幸福,娱乐,依恋爱,养育爱,敬畏和热情等(Shiota,Neufeld,Yeung,Yeung,Moser,Moser和Perea,2011年)。这些情绪具有重要的社会功能,促进方法行为,激励社会参与,促进新的社交联系(Fredrickson,2004年),并逆转由负面情绪引起的生理激活(Fredrickson&Levenson,1998)。一定程度的积极情绪反应性被认为是最佳的;太低或太高的水平可能是有问题的。例如,积极情绪过高的基础临床症状,例如阿内迪尼和抑郁症,而过高的水平会导致不适当的人际边界,风险危险和躁狂(Gruber,Harvey,Harvey和Purcell,&Purcell,2011年)。分布在情感上和情绪调节的分布式大脑系统协同行动,以产生观察到的积极情绪反应的水平(通常以面部行为,生理学和主观经验的变化来衡量)。因此,支持积极情绪的神经系统的损伤是否导致情绪柔和或强化的情绪应取决于解剖学损伤的基因座。通常,对情绪产生电路的损害应降低积极的情绪反应性,而对情绪调节电路的损害应削弱抑制作用,从而导致高度带来积极的情绪。长期以来一直在争论积极情绪在大脑中横向的程度。两条证据支持这一结论。While emotion generating sys- tems (i.e., projections from pregenual anterior cingulate cor- tex to the central nucleus of the amygdala, hypothalamus, and brainstem) initiate rapid emotional responses to positive emotional cues ( Saper, 2002 ), emotion regulating systems (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, dorso- medial prefrontal cortex, and pre/supplementary motor area), with connections to striatum, thalamus, and subthalamic nuclei, promote down-regulation of affective responding in ways that are commensurate with individual goals and the social context ( Aron, 2007; Ochsner & Gross, 2005; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008 ).有些人认为对积极和负面情绪的感知和表达存在正确的半球优势(Tucker,1981),但其他人则建议左半球在积极情绪中起着主导作用(Davidson&Fox,1982)。先前的研究得出的结论是,左半球损害通常会减少积极的情绪,而右半球损害通常会增加积极的情绪。在WADA的研究中,可以停用右半球(通过单侧氨基脂质注射杏仁钠)但保留左侧的左半球,患者经常表现出乐观和欢笑(Perria,Rosadini和Rossi,&Rossi,&Rossi,1961; Sackeim等,Sackeim等,1982)。同样,许多病变研究,但不是全部(House,Dennis,Warlow,Hawton和Molyneux,1990),发现右半球损伤通常会导致笑声和微笑(Gainotti,1972; Sackeim等,1982)。积极的情绪被认为在右半球损害或功能障碍的范围内持续存在,因为
– 阿尔茨海默氏痴呆 – 血管性痴呆 – 路易体痴呆 – 额颞叶变性 – 创伤性脑损伤 – 物质诱发 – 帕金森病 – 艾滋病毒 – 等等。OHSU
摘要 目的 评估日本老年人群中区域性灰质萎缩与痴呆风险的关联。方法 我们对 1158 名年龄 ≥ 65 岁的无痴呆症的日本居民进行了 5.0 年的随访。应用基于体素的形态测量方法估计基线时的区域灰质体积 (GMV)。计算 GMV 与总脑体积之比 (GMV/TBV),并使用 Cox 比例风险模型估计其与痴呆风险的关联。我们评估了是否可以通过在痴呆相关脑区中增加灰质萎缩区域总数来提高基于已知痴呆风险因素的模型的预测能力,其中每个区域灰质萎缩的临界值由受试者工作特征曲线确定。结果 在随访期间,113 名参与者患上了全因痴呆,其中 83 人患有阿尔茨海默病 (AD)。内侧颞叶、岛叶、海马和杏仁核的较低 GMV/TBV 与全因痴呆和 AD 的高风险显著/略相关(所有趋势 p 值≤0.08)。全因痴呆和 AD 的风险随着出现灰质萎缩的大脑区域总数的增加而显著增加(趋势 p 值均<0.01)。将灰质萎缩区域总数添加到由已知风险因素组成的模型中可显著提高对 AD 的预测能力(Harrell 的 c 统计量:0.765–0.802;p=0.02)。结论我们的研究结果表明,内侧颞叶、岛叶、海马和杏仁核中灰质萎缩区域总数是老年人群患痴呆症(尤其是 AD)的重要预测因素。
阿尔茨海默病和额颞叶痴呆是神经退行性痴呆的常见形式。这两种疾病的临床病程中都存在行为改变和认知障碍,它们的鉴别诊断有时会给医生带来挑战。因此,专门用于这一诊断挑战的精确工具在临床实践中很有价值。然而,目前的结构成像方法主要侧重于每种疾病的检测,而很少侧重于它们的鉴别诊断。在本文中,我们提出了一种基于深度学习的疾病检测和鉴别诊断方法。我们建议在此应用中使用两种类型的生物标志物:结构分级和结构萎缩。首先,我们建议训练大量 3D U-Nets,以使用结构 MRI 作为输入,在本地确定健康人、阿尔茨海默病患者和额颞叶痴呆患者的解剖模式。该集合的输出是 2 通道疾病坐标图,可以将其转换为临床医生易于解释的 3D 分级图。该双通道疾病坐标图与多层感知器分类器相结合,用于不同的分类任务。其次,我们建议将我们的深度学习框架与基于体积的传统机器学习策略相结合,以提高模型的判别能力和稳健性。经过交叉验证和外部验证,我们基于 3319 个 MRI 的实验表明,与最先进的疾病检测和鉴别诊断方法相比,我们的方法产生了具有竞争力的结果。
脑钟可以量化大脑年龄与实际年龄之间的差异,有望帮助人们了解大脑健康和疾病。然而,多样性(包括地理、社会经济、社会人口、性别和神经退化)对大脑年龄差距的影响尚不清楚。我们分析了来自 15 个国家(7 个拉丁美洲和加勒比国家 (LAC) 和 8 个非 LAC 国家)的 5,306 名参与者的数据集。基于高阶交互,我们开发了一种用于功能性磁共振成像(2,953)和脑电图(2,353)的大脑年龄差距深度学习架构。数据集包括健康对照者和患有轻度认知障碍、阿尔茨海默病和行为变异额颞叶痴呆症的个体。与非 LAC 模型相比,LAC 模型显示额后网络的大脑年龄较大(功能性磁共振成像:平均方向误差 = 5.60,均方根误差 (rmse) = 11.91;脑电图:平均方向误差 = 5.34,rmse = 9.82)。结构性社会经济不平等、污染和健康差距是导致大脑年龄差距扩大的重要预测因素,尤其是在 LAC(R ² = 0.37,F ² = 0.59,rmse = 6.9)。发现从健康对照组到轻度认知障碍再到阿尔茨海默病,大脑年龄差距不断扩大。在 LAC 中,我们观察到对照组和阿尔茨海默病组女性的大脑年龄差距大于男性。结果无法用信号质量、人口统计或采集方法的差异来解释。这些发现提供了一个定量框架,可以捕捉加速大脑衰老的多样性。
© 作者 2024。开放存取本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom‑mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
Chonghua Xue 1 , 2 , ∗ , ∗ , Sahana S. Kowshik 1 , 3 1 † , Brigid C. Dwyer 6 † , Chad W. Farris 8 † Asim Z. Mian 6 † , Daniel L. Murman 10 † , Sarah A. O'Shea 11 † Setty 6 † , Juan E. Small 13 † , Arun Swaminan 14 † 3 ‡
在临床治疗和科学研究中,神经系统疾病始终代表了一个重大挑战。随着研究的进行,线粒体在神经疾病的发病机理和进展中的重要性越来越突出。线粒体不仅用作能源的来源,而且用作细胞生长和死亡的调节剂。氧化应激和线粒体都与线粒体密切相关,并且有越来越多的证据表明线粒体和氧化应激对神经系统疾病的发病机理产生了关键的调节作用。近年来,脑缺血/再灌注损伤(CI/RI),血管性痴呆(VAD)和阿尔茨海默氏病(AD)的患病率显着升高,这集体代表了一个重大的公共卫生问题。在CI/RI,VAD和AD中,已经观察到线粒体水平降低。通过线粒体水平的增加证明了相关病理的改善。CI/RI导致脑组织缺血和缺氧,这会导致氧化应激,血脑屏障(BBB)的破坏以及对脑脉管系统的损害。BBB的破坏和脑血管损伤可能在某种程度上诱导或加剧VAD。此外,由于血管损伤或功能改变引起的脑灌注不足可能会加剧淀粉样β(Aβ)的积累,从而导致或加剧AD病理学。静脉内组织纤溶酶原激活剂(TPA; Alteplase)和血管内血栓切除术是中风的有效治疗方法。但是,使用TPA和血栓切除术的机会狭窄,这导致CI/RI患者的残疾发生率明显升高。令人遗憾的是,目前还没有VAD和AD的具体药物。尽管美国食品药品监督管理局(FDA)批准了用于AD的临床一线药物,包括美金刚,盐酸多奈奈二奈二奈锡,但这些药物并未从根本上阻止AD的病理过程。在本文中,我们对神经系统疾病中的线粒体和氧化应激的机制进行了综述,近年来进行的临床试验的摘要,以及针对基于粘液和氧化应激的神经系统疾病的新策略的提议。
Nicholas-Okpara Viola A.N.1,2,Adegboyega Maryam Olanshile 1,3*,Julius Enyong Oben 4,Leonard L. Williams 2,Utazi Ifesinachi Anastasia 5