对温度变化敏感的微生物组的平衡在维持整体健康和降低疾病风险方面起着至关重要的作用。然而,免疫力和微生物群相互作用以适应冷应激的特定机制尚未解决。在这项研究中,选择南江黄山羊作为模型,并在寒冷(冬季,冷应激)和温暖(春季)季节进行采样。对血清免疫因子以及瘤胃和粪便微生物群落的组成进行了分析,以探索在冷应激下微生物群和先天免疫之间的串扰。与温暖季节相比,在寒冷季节观察到IgA水平的显着升高(p <0.01)。相反,在冷应激下,IL-2(p = 0.02)和IL-6(p <0.01)的水平降低。但是,在IgG(p = 0.89),IgM(p = 0.42)和IL-4(p = 0.56)中没有观察到显着差异。虽然在温暖和寒冷的季节之间没有细菌群落多样性的显着变化,但观察到血清IGA,IL-2,IL-6浓度和几个属之间的正相关。此外,加权基因共表达网络分析表明,富含Mebrown模块的微生物群与IgA呈正相关,而微生物群富含Meblue模块与IL-2和IL-6正相关。某些益生菌(包括Alistipes,bacteroides,blautia和prevotellaceae _ucg.004)和IL-2的浓度和IL-6之间的强相关性表明它们在免疫调节特性中的潜在作用。这项研究在冷压力的挑战下对微生物群落和免疫反应之间的串扰提供了宝贵的见解。对这些益生菌的免疫调节特性的进一步研究将有助于发展策略,以增强动物的压力抵抗力,以改善整体健康和生存。
先前的研究已经讨论了Sanhe和荷斯坦奶牛之间的血清代谢与哺乳性表现之间的关联,发现这两种品种的代谢谱与平等不同。由于瘤胃是奶牛营养吸收和生产转化的中心器官,因此在相同饮食条件下观察到的差异是否与瘤胃微生物组的结构有关,尚不清楚。这项研究测量了四个奇偶族的Sanhe Cows(S1/S2/S3/S4)和Holstein Cows(H1/H2/H3/H4)的明显消化率和瘤胃发酵参数,并使用高通量测序技术产生了全面的瘤胃象征性型菌群数据集。在S组之间观察到干物质消化率(P = 0.001)和氨氮(P = 0.024)的显着差异,S1中各种VFA含量的趋势较高(0.05 H组在粗蛋白消化率上显示出显着差异(p = 0.001),H1中的较高的异价酸含量(p = 0.002)以及H3中最低的乙酸盐与丙酸丙酸酯与丙酸酯比(P = 0.002)。 元基因组测序结果表明瘤胃微生物组模式和代谢变化之间的一致性,S1与S2/S3/S4明显不同,H1和H2与H3和H4不同。 瘤胃微生物组的物种组成在Sanhe和Holstein Cow之间相似,但注意到丰度的差异。 根瘤菌<肾小球>,新甲基脂肪酸群和心摩肌在S1,H1和H2中更为丰富,并且在这些阶段中,自噬 - 触及植物 - 病原体相互作用和内吞作用等途径显着富集。H组在粗蛋白消化率上显示出显着差异(p = 0.001),H1中的较高的异价酸含量(p = 0.002)以及H3中最低的乙酸盐与丙酸丙酸酯与丙酸酯比(P = 0.002)。元基因组测序结果表明瘤胃微生物组模式和代谢变化之间的一致性,S1与S2/S3/S4明显不同,H1和H2与H3和H4不同。瘤胃微生物组的物种组成在Sanhe和Holstein Cow之间相似,但注意到丰度的差异。根瘤菌<肾小球>,新甲基脂肪酸群和心摩肌在S1,H1和H2中更为丰富,并且在这些阶段中,自噬 - 触及植物 - 病原体相互作用和内吞作用等途径显着富集。多方的Sanhe奶牛的ATP结合盒转运蛋白途径的丰度更高。此外,诸如GH84和GH37之类的Cazymes与差异性生理指标和牛奶性状显着相关。总而言之,这项研究揭示了Sanhe和不同奇偶群体的瘤瘤菌与代谢特征之间的复杂关系,这表明瘤胃微生物组的结构的变化可能是影响乳头奶牛泌乳性能和代谢差异的关键因素。
1 中国热带农业科学院热带作物品种资源研究所,农业农村部木薯种质资源保护与利用重点实验室,农业农村部南方作物基因资源与种质创制重点实验室,儋州 571737;limaohn@163.com (ML);lvrenlong@aliyun.com (RL);wenjunou@catas.cn (WO);songbichen@catas.cn (SC) 2 中国热带农业科学院湛江实验站,湛江 524000 3 海南大学热带农林学院,海南省热带特种观赏植物种质资源重点实验室,热带特种林木观赏植物遗传与种质创新教育部重点实验室,儋州 571737; zixuejuan@163.com (XZ); lidongzhang@catas.cn (LZ) * 通讯作者: guanyuhou@126.com (GH); zhouhanlin8@163.com (HZ) † 以上作者对本文贡献相同。
(CH 4)排放,通过在其Forestomach中发酵饲料(图1)(Knapp等,2014)。反刍动物具有独特的消化系统,该消化系统由四个腔室的胃组成:瘤胃,网状,奥马苏姆和母库。瘤胃是许多微生物的住所,包括细菌,真菌,原生动物和古细菌,这些微生物在寄主动物的饲料降解和能量供应中起着至关重要的作用(Bergman,1990; Maia等,2016)。饲料成分,尤其是碳水化合物,在瘤胃中部分或完全发酵,并产生挥发性脂肪酸(VFAS),例如乙酸盐,丙酸酯,丁酸酯,丁酸酯,以及二氧化碳(CO 2)和氢气(H 2)(H 2)(h 2)(Van Nevel和Demeyer,1996)(图。2)。挥发性脂肪酸是反刍动物的重要能源,而CO 2和H 2后来可以通过甲烷古细菌的作用将其从动物进入环境之前将其降低至CH 4(Bergman,1990)。甲烷是全球变暖的主要贡献者之一,其全球变暖潜力是另一种温室气2(Grossi等,2019)。瘤胃的Ch 4排放量代表饲料中最多15%的总能量(GE)损失,否则可以用于动物的生长和生产(Van Nevel和Demeyer,1996),因此对动物不利。因此,制定适当的CH 4减排策略对于未来获得可持续的反刍动物生产系统很重要(Grossi等,2019)。interic甲烷发生既是环境和营养问题,并且在此过程中的任何中断都可以为动物提供营养益处,并导致释放较低有效的温室气体CO 2和H 2(Patra等人,2017年; Grossi等人,2017; Grossi等,2019)。
摘要:二氧化碳 (CO 2 )、一氧化二氮 (N 2 O) 和甲烷 (CH 4 ) 等人为温室气体排放量不断增加是气候变化的主要驱动因素,如果不加以控制,预计未来几年将带来无数有害后果。鉴于 CH 4 在短期内能够有效地将热量困在空气中,以及反刍动物生产目前占人为排放量的约 30%,人们迫切需要大幅减少反刍动物产生的 CH 4 。虽然正在评估此背景下的各种策略,但可能需要采取多方面的方法来实现显着的减排。饲料补充是一种通过减弱瘤胃古菌的甲烷生成而在该领域显示出前景的策略;然而,这可能成本高昂且有时不切实际。在本篇综述中,我们研究并讨论了使用 CRISPR/Cas 介导的基因编辑平台直接调节饲料和/或瘤胃古生菌本身以减少甲烷生成的前景。这种方法可以提供一种有价值的补充替代方案,并有可能在未来为农业的可持续性以及减缓气候变化做出贡献。
自1900年代初期其在丙酮丁醇 - 乙醇(ABE)发酵中的第一个工业应用以来,梭状芽胞杆菌发现了大量的生物量生物量生物填充应用。Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H 2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives.有利地,几种梭形菌株能够使用廉价的原料,例如木质纤维素生物量,食物浪费,甘油或C1-气(CO 2,CO),以赋予它们作为较少依赖化石燃料和减少绿化温室气体发射的流程的主要参与者。本综述旨在提供旨在开发梭状芽胞杆菌介导的生物量发酵过程的研究进度的调查,尤其是关于代谢工程的应变改善。
Corresponding Author: Bess Tiesnamurti E-mail : bess002@brin.go.id Received: 19-04-2024, Accepted: 28-08-2024, Published: 15-01-2025 Co-authors: YNA: yenn012@brin.go.id, PWP: peni005@brin.go.id, MNA: moza001@brin.go.id, YW:raye001@brin.go.id,dp:dick013@brin.go.id,mm:mari052@brin.go.id.id,nhk:noor021@brin.go.id,ra:risa003@brin.go.id.id, mnas001@brin.go.id,wn:wind006@brin.go.id,esr:enis007@brin.go.id.id,ff:firs001@brin.go.id,wts:wahi003@brin.go.id whahi.go.id如何引用: Mariyono M,Krishna NH,Antari R,Setiasih S,Tiesnamurti B,Rofiq MN,Negara W,Rohaeni ES,Firsoni F和Sasongko WT(2025)比较Bali,Madura,Madura,Madura,Maderred Crossbred Caltred cottry cottery Worldiary Worldiary of Worldinary:3(39),3(2025年),3.2(2)18(2)。
在瘤胃发酵过程中产生甲烷。在碳水化合物的细菌降解期间,形成了短链脂肪酸:淀粉和糖主要导致丙酸和丁酸的形成,而粗纤维的发酵导致乙酸的形成。所有这些过程还产生CO 2和氢。从这两个成分中,所谓的甲烷菌属形成甲烷,然后通过牛的嘴以气态逃脱。当消化纤维成分并构建乙酸时,会产生特别大量的氢。因此,富含纤维的饲料成分导致甲烷产生高。因此,从理论上讲,通过饲喂富含浓缩液和纤维低的含量可以显着降低甲烷的产生。但是,考虑到生理限制,这实际上是不可能的,因为这种方法与瘤胃的pH值大量下降有关,导致酸中毒和其他疾病。
提高低质量饲料的消化率,提高谷物的营养价值,去除饲料中的抗营养因素,提高保存饲料的营养价值,改善瘤胃功能,开发增强纤维素活性的转基因细菌,降低甲烷生产能力,提高氮“固定”能力等。
摘要摘要Halogeton(Halogeton glomeratus)是一种快速增长的植物,而Greasewood(Sarcobatus vermiculatus)是西方国家的多年生灌木。草酸盐是卤素和润滑脂中的有毒原理。当允许饥饿的动物在卤素和润滑脂的重型林木林中放牧时,大多数损失会发生。Halogeton和Greasewood总是很危险,随着生长季节的发展而变得更具毒性。在这里,我们报告了牛和绵羊中的两个卤素和油脂中毒的临床病例。在组织学上,在牛的肾脏中观察到草酸盐晶体,绵羊与草酸盐中毒一致。使用气相色谱型电离检测(GC-FID)在瘤胃含量中检测到草酸盐。最后,使用DNA metabarcoding在中毒的牛和绵羊的瘤胃中检测到卤素和润滑脂。总而言之,在这些情况下,使用了多种证实证据来诊断草酸盐中毒的诊断。