严重的上肢瘫痪会给中风幸存者带来巨大的负担。鉴于中风发病率不断上升,由于缺乏有效的治疗策略,恢复严重的上肢运动障碍仍然是康复医学面临的主要挑战。镜像疗法和面向障碍的训练等德国常用的干预措施效果有限,需要找到新的策略。通过将脑信号转化为外部设备的控制命令,脑机接口 (BCI) 和脑机接口 (BMI) 代表了有前途的基于神经技术的替代方案,适用于手臂和手部功能受到严重限制的中风患者。在这篇小型评论中,我们概述了如何将基于 BCI 的疗法整合到德国神经康复的不同阶段以满足长期治疗方法的观点:我们发现在早期康复后立即开始使用基于 BCI 的神经反馈治疗是最合适的。BCI 驱动的功能性电刺激 (FES) 和 BMI 机器人治疗非常适合亚急性期的后续住院后治愈性治疗。基于 BCI 的手部外骨骼训练可在门诊职业治疗中继续进行,以进一步改善手部功能并解决慢性中风患者的动机问题。一旦康复潜力耗尽,BCI 技术可用于驱动辅助设备以补偿受损的功能。然而,在这种长期治疗策略能够在广泛的临床应用中实施之前,仍有几个挑战需要克服:1. 开发具有更好可用性的可靠 BCI 系统;2. 开展更多研究以改进 BCI 训练范式;3. 建立可靠的方法来识别合适的患者。
SUNIL JACOB 1,5 , MUKIL ALAGIRISAMY 1 , CHEN XI 2 , VENKI BALASUBRAMANIAN 3 , RAM SRINIVASAN 4 , PARVATHI R. 5 , NZ JHANJHI 6 , AND SARDAR MN ISLAM 7 , (IEEE 会员) 1 林肯大学学院电子与通信工程系,马来西亚八打灵再也 47301 2 南京大学商学院,江苏 210000,中国 3 联邦大学科学、工程与信息技术学院,澳大利亚维多利亚州 Mount Helen 3350 4 中央昆士兰大学电气工程与技术学院,昆士兰州 Norman Gardens 4701,澳大利亚 5 SCMS 工程与技术学院电子与通信工程系,印度科钦 683576 6 泰莱大学计算机科学与工程学院 (SCE),苏邦Jaya 47500,马来西亚 7 维多利亚大学应用信息学研究,墨尔本,VIC 3011,澳大利亚
摘要:神经调节是一种替代性的,微创的治疗选择,有时被用作慢性疼痛状况的最后手段,通常是对其他治疗方式难治性的慢性疼痛状况。此外,它为遇到脊髓损伤引起的截瘫和四肢瘫痪所带来的巨大挑战提供了有希望的前景。本综述文章对专门针对截瘫和四肢瘫痪患者专门定制的当前治疗方式进行了全面评估。我们旨在评估现有的外科手术和非手术干预措施,同时研究神经调节在恢复功能的作用,以恢复患有这些衰弱状况的个体。此外,我们回顾可用于管理截瘫和四边形的各种治疗策略的功效,局限性和比较结果。强调对最初24小时手术窗口以外的有效干预措施的关键需求,我们阐明了与常规疗法相关的挑战及其在实现全面功能恢复方面的有限成功。这篇综述的中心是对神经调节的变革潜力的深入探索,以改善脊髓损伤引起的缺陷。特别关注脊髓刺激(SC),我们分析和比较神经调节方式和传统治疗方案的结果,从而阐明了促进感官感知,运动功能和患者满意度所带来的有希望的前进。
1 密歇根大学生物医学工程系,美国密歇根州安娜堡 48109 2 凯斯西储大学生物医学工程系,美国俄亥俄州克利夫兰 44106 3 大都会健康医疗中心骨科系,美国俄亥俄州克利夫兰 44106 4 退伍军人事务医疗中心路易斯斯托克斯克利夫兰分部,美国俄亥俄州克利夫兰 44106 5 密歇根大学医学院麻醉系,美国密歇根州安娜堡 48109 6 密歇根大学外科系整形外科科,美国密歇根州安娜堡 48109 7 密歇根大学医学院神经外科系,美国密歇根州安娜堡 48109 8 密歇根大学电气工程与计算机科学系,美国密歇根州安娜堡48109,美国 9 密歇根大学机器人研究所,密歇根州安娜堡 48109,美国 10 密歇根大学神经科学研究生课程,密歇根州安娜堡 48109,美国 11 密歇根大学医学院神经病学系,密歇根州安娜堡 48109,美国 12 上述作者对本研究贡献相同。∗ 任何通讯作者均应致函此联系人。
大多数日常任务都需要同时控制双手。在这里,我们使用从四肢瘫痪参与者的双侧运动和体感皮层记录的多单元活动来展示双手手势的同时分类。使用针对每只手分别训练的分层线性判别模型对尝试的手势进行分类。在一项在线实验中,手势被连续分类并用于控制两个机械臂进行中心向外运动任务。需要保持一只手静止的双手试验产生了最佳表现(70.6%),其次是对称运动试验(50%)和非对称运动试验(22.7%)。我们的结果表明,可以使用两个独立训练的手部模型同时解码双手的手势,但随着双手手势组合的复杂性增加,使用这种方法进行在线控制变得更加困难。这项研究展示了使用双侧皮层内脑机接口恢复双手同时控制的潜力。
通过植入皮层或皮层下结构与大脑交互的设备对于感觉或运动功能障碍患者的恢复和康复具有巨大潜力。典型的植入手术是根据完整功能生成的大脑活动图来规划的。然而,由于目标人群的残留功能异常,以及越来越多的植入硬件与 MRI 不兼容,因此绘制大脑活动图以规划植入手术具有挑战性。在这里,我们介绍了在瘫痪患者和现有脑机接口 (BCI) 设备中绘制受损体感和运动功能的方法和结果。脑磁图 (MEG) 用于直接绘制经皮电刺激和受损手部尝试运动期间引起的神经活动。发现诱发场与预期的解剖学和躯体组织相符。这种方法可能对引导植入物在其他应用中很有价值,例如用于疼痛的皮层刺激以及改善植入物定位以帮助减小开颅尺寸。
简单总结:四肢瘫痪是人类可能遭受的最严重的疾病之一,影响着全球超过 250 万人。四肢瘫痪不仅影响行动能力,还会影响自主呼吸,以至于幸存者可能依赖呼吸机,死亡率增加。虽然没有治疗方法可以恢复四肢瘫痪后的呼吸功能,但仍需要进行更多探索性研究,以确定改善四肢瘫痪呼吸功能衰退的治疗方法。在这里,我们研究了两种模拟人类损伤形式的四肢瘫痪模型,使用小鼠脊髓挫伤,位于第三颈椎节段以上(C3 模型)或第六颈椎节段以下(C6 模型)膈神经的神经支配。这些神经负责膈肌(主要吸气肌)的收缩。通过测量自主呼吸和膈肌活动,我们发现两种模型中的膈肌活动都减少,但只有 C3 模型导致自主呼吸减少,类似于四肢瘫痪人类的症状。此外,我们发现只有 C3 模型的膈肌基础收缩力下降。我们得出结论,C3 模型是探索四肢瘫痪后恢复呼吸的干预措施的合适模型。
2023年6月14日,FDA发布了一份标题为“设备软件功能的预售内容的内容”的指南。 1该最终指南取代了2005年5月11日发布的医疗设备中包含的软件上市预报内容的指南。2023年6月14日发布的最终指南提供了有关推荐的文档发起人应包括的信息,以便在premarket提交中包括FDA评估设备软件功能的安全性和有效性。特别是,最终指南包括帮助确定设备文档级别(以前称为关注级别)的信息。文档级别的目的是帮助确定支持包括设备软件功能的前市场提交的最小信息。
2. Heather Venable,“同侪冲突中的瘫痪?百年军事思想中的物质与精神”,《War on the Rocks》,2020 年 12 月 1 日,https://warontherocks.com/2020/12/paralysis-in-peer-conflict-the-material-versus-the-mental-in-100-years-of-military-thinking/;Michael Kofman,“糟糕的恋情:美国作战概念需要抛弃与认知瘫痪的恋情,与消耗战和平相处”,西点军校现代战争研究所,2021 年 3 月 31 日,https://mwi.usma.edu/a-bad-romance-us-operational-concepts-need-to-ditch-their-love-affair-with-cognitive-paralysis-and-make-peace-with-attrition/。 3. 关于战略瘫痪,请参阅 David S. Fadok 的《约翰·博伊德和约翰·沃登:空中力量寻求战略瘫痪》(论文,空军大学,1995 年)。4. 美国空军,空军部《联合全域作战 (JADO) 中的作用》,空军条令出版物 (AFDP) 3-99(麦斯威尔空军基地,阿拉巴马州:柯蒂斯·勒梅条令发展与教育中心,2020 年),https://www.doctrine.af.mil/Portals/61/documents/AFDP_3-99/AFDP%203-99