本研究从一种在菲律宾传统上称为 Balao-balao 的发酵米虾混合物中分离出乳酸菌。筛选乳酸菌菌株表明,10 种分离物对测试微生物表现出良好的抑制活性,即金黄色葡萄球菌 BIOTECH 1634、大肠杆菌 BIOTECH 1582、枯草芽孢杆菌 BIOTECH 1679 和哈维氏弧菌 SEAFDEC 010。感兴趣的是分离物 PL12,这是一种产生细菌素的菌株,对测试的病原体表现出最高的抑制活性。分离物 PL12 被鉴定为戊糖片球菌 (GenBank 登录号 MF353992),通过 16S rDNA 序列分析具有 100% 的相似性。排除有机酸和过氧化氢的影响,PL12 分离株的无细胞上清液 (CFS) 在琼脂孔扩散试验中表现出对测试病原体的强拮抗活性。这些结果证实了分离株的蛋白质性质,并表明了细菌素的典型特性。为了进一步浓缩 CFS 中的蛋白质,进行了硫酸铵沉淀,然后进行柱纯化(Sep-Pak C 18 筒式柱)。在测试的革兰氏阳性菌和革兰氏阴性菌中均观察到 PL12 细菌素的阳性拮抗作用。在每个纯化步骤中都发现对大肠杆菌的抑制活性最高。这些结果表明,产生细菌素的 PL12 分离株可以成为食品工业中一种有前途的防腐剂,也可以作为水产养殖中的益生菌,因为它具有对抗哈维氏弧菌的拮抗活性。
摘要背景:番茄(Solanum lycopersicum L.)是全球经济上有价值的作物。由于使用无菌性雄性会降低F1种子产量的成本,因此男性不育的创新对于番茄育种具有重要意义。中止的微孢子基因(AMS)编码为基本的螺旋 - 环螺旋(BHLH)转录因子编码,以前已被指定为拟南芥和水稻中tape虫发育的必不可少的基因。确定SLAM基因的功能(来自S. lycopersicum的AMS基因),并验证它是否是产生番茄中雄性无菌性的潜在候选基因,我们使用病毒诱导的基因沉默(VIGS),CRIS/CAS9介导的介导的基因组编辑和过度表达技术来通过AgrobstermaTer transfote transfortium tomato tonrestim tonrection tonrys tomato。结果:在这里,来自S. lycopersimum的1806 bp的全长猛击基因(登录号MK591950.1)从花粉cDNA克隆。花粉颗粒染色的结果表明,猛击的不可行的花粉比例 - 沉默(75%), - 敲除(89%)和超过表达植物(60%)明显高于野生型植物(小于10%; p <0.01)。在三种情况下,不可生存的花粉颗粒的形态似乎是四方,循环,萎缩,萎缩或以其他方式形状的形态,而野生型的形态则显得椭圆形和丰满。更重要的是,QRT-PCR分析表明,在大满贯和敲除的植物的花药中的猛击的表达明显低于野生型的表达(p <0.01),但在大量过表达的植物中的表达(p <0.01)(p <0.01)。
The whole phenomena for designing vaccine of BA.2 (omicron) a variant of severe acute respiratory syndrome coronavirus2 (SARC-CoV2) is based on five major steps which are (1) sequence retrieval and its structure analysis (2) Epitopsis prediction (B&T-cell epitopsis prediction) (3) Vaccine Construction (4) Secondary & Tertiary structure Extrapolation and Validation (5)分子动力学和表达分析。用于构建潜在疫苗,具有登录号的Omicron的核蛋白磷蛋白序列。ujp23613.1从NCBI(https://www.ncbi.nlm.nih.gov/)中检索,然后将序列放入expasy ProtPAM工具中,以找出靶蛋白的生理化学特性。通过PSIPRED工具(https://www.expasy.org/)预测蛋白质的二级结构。vaxijen v2.0检查了蛋白质的抗原概率。对于更高的特异性,阈值设置为≥0.4。 Allertop v2.0检查了蛋白质的过敏性。使用trroasetta(https://yanglab.nankai.edu.cn/trrosetta/)检查Omicron蛋白的三级结构。通过使用Bepipred线性表位预测来预测表位。该工具使用隐藏的基于马尔可夫模型的算法,这是一种最佳的线性表位计算方法之一。HOMO SAPIEN被选为MHC来源的ANN 4.0方法,以研究人类中不同的MHC HLA等位基因。IEBD工具根据IC50 nm单元提供了表位的HLA结合亲和力的输出接口。用于构建完整的疫苗5 B细胞表位,分别使用了MHC级I的12个T-Cell表位和MHC级II的19个表位。
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
摘要本研究报告了奶牛场的流产,腹泻和牛奶生产急剧下降。该农场通常用进口疫苗接种了针对BVDV的疫苗,其中含有典型的Pestiviruses菌株(BVDV-1和BVDV-2)。从流产的母牛和显示持续性腹泻的奶牛中收集了总共13个血清样品,5个阴道排放样品和5个粪便样品。使用PCR筛选所有样品的潜在微生物原因(病毒或细菌)。在测试的23个样品中,只有一个阴道放电样品在预期的288 bp下产生了阳性的PCR结果。设计的引物是对基于5'-UTR的RTPCR测定法的高灵敏度,用于检测Pestiviruses。将PCR产品发送进行序列分析,并将结果提交给GenBank登录号#OR425033,并设计为GERD/VSVRI/PESTI-GIRAFFE/2022。然后通过三个连续的盲传中成功地在MDBK细胞中成功分离并传播该病毒。在病毒后接种后2-3天观察到了一种明显的细胞质效应(CPE),其特征是感染后72小时,其特征是液泡,细胞舍入和簇形成。pcr均在每个段落上进行,并以预期的大小给出了一个特定的频带。通过序列比对和系统发育分析的进一步分析表明,分离株与Pestivirus长颈鹿密切相关,尤其是Pestivirus PG-2。这标志着该菌株在埃及的检测,隔离和表征的第一个记录。因此,这种流行是由埃及记录的新引入的菌株引起的。因此,进口的疫苗无法提供保护,需要更新当地的疫苗以包括此Pestivirus菌株。关键字:Pestivirus PG-2,PNS,MDBK,5`UTR,CPE,系统发育分析,PCR,BDV,
Justicia Beddomei(C.B.clarke)Bennet已在传统的医疗系统中使用了多年。这项研究旨在促进J. Beddomei的识别(C.B.clarke)使用TRNH - PSBA DNA条形码区域,NCBI数据库以及植物部分的药物认知特征。基因组DNA,并进行了聚合酶链反应放大,并进行了DNA序列测定。使用相似性基本搜索方法BLASTN分析重叠群DNA序列319 bp。TRNH - 319 bp重叠群序列的PSBA条形码区域与J. Beddomei的标准序列100%相似,登录号MK347214.1来自NCBI数据库。 植物不同部分的微观研究有助于J. Beddomei与其形态相似和令人困惑的植物Justicia adhatoda L. justicia Beddomei的识别和分化,可以通过花和花序排列轻松识别。 其他鉴定特征是叶片的叶肉区域中存在囊状,以及粉末显微镜分析中有色含量和晶体的存在。 目前对J. Beddomei茎,叶和花的详细微观研究的结果在鉴定粉末状样品及其掺假剂方面具有很大价值。MK347214.1来自NCBI数据库。植物不同部分的微观研究有助于J. Beddomei与其形态相似和令人困惑的植物Justicia adhatoda L. justicia Beddomei的识别和分化,可以通过花和花序排列轻松识别。其他鉴定特征是叶片的叶肉区域中存在囊状,以及粉末显微镜分析中有色含量和晶体的存在。目前对J. Beddomei茎,叶和花的详细微观研究的结果在鉴定粉末状样品及其掺假剂方面具有很大价值。
亲爱的编辑,有记录的最极端的叶绿体 RNA 编辑例子之一来自无籽维管植物卷柏(石松门),其中发现了惊人的 3494 个胞嘧啶到尿嘧啶的编辑事件(Oldenkott 等人,2014 年)。转录后叶绿体编辑在其他卷柏属物种中是否同样普遍?在这里,我研究了 Selaginella kraussiana 和 Selaginella lepidophylla 的整个质体基因组 RNA 编辑谱,并报告了编辑位点的数量和位置在卷柏质体基因组中可能存在极大差异,其程度目前在任何其他光合作用属中都是无与伦比的。通过将 S. kraussiana(GenBank 登录号 SRR2045379 – 82)和 S. lepidophylla(SRR6345606 – 15)的公开 Illumina RNA 测序 (RNA-seq) 读段映射到这两种石松的各自叶绿体基因组序列上,确定了 RNA 编辑位点(补充材料和方法;Mower 等人,2019 年)。对于每个物种,RNA 和质体基因组测序数据来自同一栽培品种(和实验室;Ge 等人,2016 年;VanBuren 等人,2018 年),大大降低了将样本之间的多态性误认为编辑事件的可能性。RNA-seq 读段的映射几乎完全覆盖(98%)参考叶绿体基因组,包括所有基因。质体基因组的平均覆盖率超过 500 3 ,为识别编辑位点提供了可靠的比对,这些位点仅在覆盖率 5 3 和读取支持率 25% 的区域中被表征(补充材料和方法);因此,请记住,本研究未记录编辑效率低( ,25%)的位点。在 S. kraussiana 和 S. lepidophylla 叶绿体转录组中分别鉴定出 1353 个和 720 个 C 到 U 的变化(表 1;补充材料和方法)
花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
基于全基因组测序的链霉菌属的表征。 6(4):关注天然产品1 2 MarcelaProençaBorba1(0000-0003-4909-969X),JoãoPaulowitusk 1,DéboraMarchesan Cunha 1,Daiana deiana de Lima- 3 Mora-3 Morales 2,3 591-6514)4 5 1-农业和环境微生物学的研究生课程,基本健康科学研究所,6联邦大学里奥格兰德大学,巴西Porto Alegre,巴西Porto Alegre 7 2-生物信息知识从Porto Alegre开始阿雷格里、南里奥格兰德州、阿雷格里港、巴西 10 11 通讯作者:Marcela Proença Borba(ceh.proenca@gmail.com) 12 13 关键词 14 次生代谢产物、基因组挖掘、放线菌、生物合成基因簇、植物病原真菌。 15 16 数据摘要 17 该全基因组霰弹枪项目已存入 DDBJ/ENA/GenBank,登录号为 18 VIFW00000000。由于核苷酸序列数量巨大,在整个手稿和在线资源的补充数据中发现了数据库登录号。 20 21 摘要 22 我们对链霉菌属的整个基因组进行了测序。 6(4)是从番茄根部分离得到的,对植物病原真菌具有抗真菌活性,主要针对番茄根结线虫(Bipolaris sorokiniana)。该基因组有近 7 Mb 和 24 3,368 种假设蛋白质,这些蛋白质在 Uniprot 中进行了分析和表征,重点是 25 种生物化合物。为了表征和鉴定该分离株,进行了 MLST 分析,最终得到一种新的 ST,26 归类为 ST64。构建了表型和系统发育树来研究链霉菌属。 6(4)进化27和序列相似性,该分离株是与Streptomyces prasinus和Streptomyces viridosporus更接近的菌株。已知链霉菌属具有强大的代谢能力,并且存在隐秘基因。这 29 个基因通常以簇的形式存在,负责生产多种天然产物,其中主要是抗生素。此外,6(4)显示通过反SMASH扩增出11个生物合成基因簇,其中包括3个簇31PKS和NRPS类型。 32 33 34 简介 35
CECT 9999 CECT细菌中的登录数 /细菌 /细菌 /酵母 /丝状真菌型应变,如果应变是命名型型CECT CECT CECT验证的菌株,仅可用于CECT经过验证的菌株。提供了指定应变概况(小型化系统(如API测试和选择性和差异培养媒体上的增长)的概况的报告链接,如果库存出现的库存显示,如果劳力目前缺货(大约1个月),该物种的名称是该物种的科学名称,则应通过作者名称和本性名称的定期来指示。物种虽然该名称未有效出版。在真菌的情况下,由于活真菌培养物不能具有类型标本的形式命名命名状态,因此从类型标本中得出的任何分离物的真实性或产生干燥类型培养物(EX-Type)的真实性如下:T = t = ex type株(通常); HT = Ex Holotype菌株(如果要明确指示相关样品的整型状态); nt = ex neotype菌株; lt =外型应变; it = ex iSotype; st = ex syntype; pt = ex Paratype; ptt = pathotype; aut =正宗应变;或=原始应变;参考=参考应变品种,血清型,血清,血清,Biovar同义词的其他名称的其他名称名称是由存款人提供的应变的菌株名称名称,其他集合中的其他集合登录号和/或WDCM参考菌株分类目录访问(原位)采样数据。培养基的组成与培养物中的数量有关。在名古屋方案的背景下,在生态系统和自然栖息地中存在遗传资源的样本,以及在驯养或耕种物种的情况下,在他们开发出独特特性的环境中。包括(如果有),包括来源,位置,人员/机构和访问年份隔离数据数据,涉及与原始样品隔离的隔离。包括(如果有),包括位置,人员/机构和隔离的年度历史历史记录在cect中。从CECT收到压力的年份开始,然后在存款时,在括号中的菌株的科学名称,当时与当前的科学名称生长条件培养培养基和生长条件不同,这确保了应变的良好恢复和生长。还提供了有关该领域的更多详细信息的文档“培养条件”的链接
