实现 NEI 使命的最重要机制是支持最高质量的研究人员发起的研究。资助决定基于科学优先事项、潜在影响和机会。国会在 2020 财年 (FY) 拨给 NEI 的 8.24 亿美元中,85% 分配给了全国各地的大学和研究中心(院外),11% 资助了 NEI 设施的研究(院内)。院外项目涵盖从遗传学和细胞生物学到转化动物模型和复杂的多中心临床研究的基础研究。NEI 还重视招募、培训和留住人才,并特别考虑新研究人员和早期研究人员。NEI 院外投资组合传统上根据解剖学和疾病分为六个核心项目:视网膜;角膜;晶状体和白内障;青光眼和视神经病变;斜视、弱视和视觉处理;以及低视力和失明康复。
受技术、法规和宗派挑战的拖累,在受精时编辑人类胚胎基因组的前景仍然是一个长期目标。考虑到这一现实,2015 年国际人类基因编辑峰会报告了编辑小鼠精子原干细胞,然后进行睾丸移植,从而修复了导致白内障的突变。2 然而,事实证明,该领域的进一步实验工作有限。同样有限的努力也体现在编辑卵子上,尽管随着干细胞衍生配子的前景成为现实,编辑配子可能会蓬勃发展。这一结果必然会将焦点从编辑胚胎的基因组转移到其前身配子。这可能会增加对基因组编辑过程的控制,包括消除胚胎嵌合体的问题。在本文中,我们讨论了编辑精子和卵子
近年来,眼部成像、药物输送和眼科手术方面的进步使人们能够更好地观察和接触脉络膜上腔。尽管以前人们认为脉络膜上腔只是一个潜在空间,但它可以作为药物输送到后极的途径、青光眼引流装置的出口、临时扣带的位置和假体植入的位置。输送到脉络膜上腔的药物可以在视网膜中达到更高的浓度,同时最大限度地减少前段组织的暴露,从而可能降低青光眼或白内障的风险。最后,先进的多模态成像现在不仅可以更好地了解脉络膜上腔的生理学,还可以在体内监测病理和脉络膜上腔的药物输送。在这里,我们讨论了这个具有潜力的空间在医学和外科应用方面的最新发展。
摘要:丝裂原活化蛋白激酶 (MAPK) 通路是普遍存在的细胞信号转导通路,调节生命的各个方面,在疾病中经常发生改变。一旦通过磷酸化激活,这些 MAPK 反过来磷酸化并激活存在于细胞质或细胞核中的转录因子,导致靶基因的表达,并因此引发各种生物反应。这项工作的目的是提供全面的综述,重点关注 MAPK 信号通路在眼部病理生理学中的作用以及影响这些通路治疗眼部疾病的潜力。我们总结了目前已鉴定的 MAPK 靶向化合物在眼部疾病(如黄斑变性、白内障、青光眼和角膜病变)方面的知识,也总结了在细胞分化、增殖或迁移有缺陷的罕见眼部疾病方面的知识。还讨论了潜在的治疗干预措施。此外,我们还讨论了克服某些 MAPK 抑制剂报告的眼部毒性的挑战。
诊断测试:RP的诊断依赖于逐渐丧失外周(侧)视觉丧失的文献(带有视觉场围场的测试)以及与视网膜变性相关的眼部(眼)变化的证明。视网膜检查显示,色素变化称为骨香料,光学连贯扫描证实了视网膜变薄。后来在疾病中,可能会发生白内障(眼睛镜片中的阴影)。用电视图(ERG)进行的其他测试(衡量视网膜对光线的电反应)通过评估感光体功能来证实RP的诊断。遗传测试虽然不是诊断RP的必要条件,但有助于获得准确的诊断,并有可能评估将这种疾病从父母转移到子女的风险。有时,实验室测试可用于排除可能看起来像RP或检测与RP相关的疾病的其他疾病。
申请人要求批准永久特殊用途许可证(SUP),在NP-O(邻里计划办公室)区的Hauser Street 11071号运营一家名为最佳眼保健的医疗诊所。最佳眼保健是一种眼科实践,可为与眼睛有关的一系列急性和慢性病提供医学和外科护理,包括但不限于糖尿病,高血压,干眼,白内障和青光眼。在此位置不会提供手术。该诊所建议占领西大学商业园4号建筑物4B,这是一个3,649平方英尺的租户空间。访问仅通过约会安排。商业园区有两种现有的特殊用途许可证用于医疗诊所用途。此请求需要在计划委员会会议上进行公开听证会,并由理事机构进行审议。
多模态 CT 扫描,包括非造影 CT、CT 灌注和 CT 血管造影,广泛用于急性中风诊断和治疗计划。虽然每种成像模式在脑横截面特征可视化方面都有其优势,但不同模式的图像分辨率不同,这妨碍了放射科医生辨别一致但细微的可疑发现的能力。此外,更高的图像质量需要更高的辐射剂量,从而增加白内障形成和癌症诱发等健康风险。在这项工作中,我们提出了一种基于深度学习的方法 Transfer-GAN,该方法利用生成对抗网络和迁移学习来提高多模态 CT 图像分辨率并降低必要的辐射暴露。通过大量实验,我们证明,与不学习先验知识的训练相比,从多模态 CT 进行的迁移学习提供了显着的可视化和数量增强。
抽象的上皮间质转变(EMT)是细胞在获得间质的能力中失去上皮特征的能力。这是由损害,缺氧或炎症引起的动态和可逆过程。在不同器官的组织修复过程中,EMT事件的执行可能是完整的或部分的。在伤口愈合过程中,EMT在重新上皮化,血管生成和Langerhans细胞免疫学作用方面具有重要作用。另一方面,持续的EMT是多个器官,白内障和子宫内膜异位症的伤口恐惧,纤维化病理的基础的关键机制。因此,在伤口愈合和组织修复过程中对EMT调节的理解具有重要的临床意义,因为慢性伤口代表了主要的医疗保健费用。EMT可以产生具有干细胞特征的成年细胞。因此,可以预测,它有助于维持器官稳态的不同祖细胞的池。对于确定正常组织中的EMT是否导致正常干细胞的产生,需要进一步的分析。
由于遗传,环境和进化因素的结合,衰老的速度在整个物种之间差异很大。例如,只有7至10岁的驯养狗(Canis lupus famelisis)开始发展与年龄相关的疾病,例如白内障,关节炎,听力受损,心力衰竭和肾脏疾病,而10岁的人仍然是一个年轻的,不含慢性病的年轻人,没有慢性病。与此同时,最古老的陆地动物是塞舌尔巨型乌龟,乔纳森(Jonathan),尽管在1832年孵化。动物中衰老速度或生物衰老的这种变异性表明,衰老过程可能是可修改的。实际上,由于我们开始了解衰老的生物学机制,因此我们年龄较大的速度似乎是可延展的。使用动物模型的科学家找到了使小鼠,蠕虫和酵母细胞寿命更长的最佳方法是将其Cal-Orie摄入量减少约三分之一,并使它们处于半饥饿状态。虽然这可能对老鼠有用,但是当您这样做时,人类会变得胡思乱想。