环境森林和气候变化部 (MoEF&CC) 下属的国家可持续沿海管理中心 (NCSCM) 正在开展珊瑚礁原位观测网络 (CReON) 计划,该计划侧重于长期珊瑚礁健康监测、钙化率和海洋酸化,基于在印度海岸沿线各个珊瑚礁地点部署数据浮标和自动气象站,包括安达曼和尼科巴群岛和拉克沙群岛。NCSCM 按照 2011 年和 2019 年的沿海管制区通知 (CRZ) 绘制了印度 1439 平方公里的珊瑚礁地图。最近,NCSCM 向环境森林和气候变化部提交了一份提案,要求绘制拉克沙群岛的珊瑚生物多样性地图,以确定国家沿海任务下拉克沙群岛珊瑚礁的当前范围和状况(健康状况)。
•在生物化学,分子生物学或生物技术或紧密相关的领域完成的硕士研究•有关真核生物基因表达调节的知识•分子生物学和/或生物信息学领域的经验和技能•兴趣•使用独特的真实性和传播方法•学习•愿意•学习•适应性的方法••学习•技术•技术•技术•项目会议和科学会议•科学领域的出色英语语言技能•个人技能:独立性,但也能够在团队中工作,面向解决方案的思维,面向细节的工作风格
1罕见疾病遗传学和代谢,Inserm U1211,SBM系,波尔多大学,F-33076法国波尔多; Angela.tingaud-sequeira@u-bordeaux.fr(A.T.-S。); elina.mercier@etu.u-bordeaux.fr(E.M.); vincent.michaud@chu-bordeaux.fr(v.m.); benoit.arveiler@chu-bordeaux.fr(b.a.)2分子遗传学实验室,波尔多大学医院,F-33076 Bordeaux,法国3 Sam,TBMCore,CNRS UAR 3427,Inserm US005,Bordeaux Univer,F-33076 Bordeaux,F-33076法国; pinson@ibgc.cnrs.fr 4 MRC人类遗传学单位,爱丁堡大学,爱丁堡EH4 EH4 2XU,英国; ivet.gazova@gmail.com(i.g. ); lisa.mckie@ed.ac.uk(L.M. ); ian.jackson@ed.ac.uk(I.J.J。) 5波尔多成像中心,CNRS,Inserm,BIC,UMS 3420,US 4,Bordeaux大学,F-33076 BORDEAUX,法国BORDEAUX; etienne.gontier@u-bordeaux.fr(例如 ); fanny.decoeur@u-bordeaux.fr(F.D.) *信件:sophie.javerzat@u-bordeaux.fr2分子遗传学实验室,波尔多大学医院,F-33076 Bordeaux,法国3 Sam,TBMCore,CNRS UAR 3427,Inserm US005,Bordeaux Univer,F-33076 Bordeaux,F-33076法国; pinson@ibgc.cnrs.fr 4 MRC人类遗传学单位,爱丁堡大学,爱丁堡EH4 EH4 2XU,英国; ivet.gazova@gmail.com(i.g.); lisa.mckie@ed.ac.uk(L.M.); ian.jackson@ed.ac.uk(I.J.J。)5波尔多成像中心,CNRS,Inserm,BIC,UMS 3420,US 4,Bordeaux大学,F-33076 BORDEAUX,法国BORDEAUX; etienne.gontier@u-bordeaux.fr(例如); fanny.decoeur@u-bordeaux.fr(F.D.)*信件:sophie.javerzat@u-bordeaux.fr
头足类动物在无脊椎动物中以认知能力、适应性伪装、新颖结构和通过 RNA 编辑重新编码蛋白质的倾向而引人注目。然而,由于缺乏遗传上可处理的头足类模型,这些创新背后的机制尚不清楚。CRISPR-Cas9 等基因组编辑工具允许在不同物种中进行定向突变,以更好地将基因和功能联系起来。一种新兴的头足类模型 Euprymna berryi 产生大量胚胎,这些胚胎可以在其整个生命周期中轻松饲养,并且具有已测序的基因组。作为原理证明,我们在 E. berryi 中使用 CRISPR-Cas9 来靶向色氨酸 2,3 双加氧酶 (TDO) 基因,色氨酸 2,3 双加氧酶 (TDO) 是形成色素色素所需的酶,色素色素是头足类动物眼睛和色素细胞中的色素。将靶向 tdo 的 CRISPR-Cas9 核糖核蛋白注射到早期胚胎中,然后培养至成年。出乎意料的是,注射的标本是有色的,尽管通过对注射动物 (G0s) 进行测序验证了目标位点的插入缺失。经过多代繁殖的 TDO 纯合敲除系也有色。令人惊讶的是,E. berryi 中也存在编码吲哚胺 2,3 双加氧酶 (IDO) 的基因,该酶在脊椎动物中催化与 TDO 相同的反应。使用 CRISPR-Cas9 对 tdo 和 ido 进行双敲除产生了白化表型。我们展示了这些白化病在双光子显微镜对大脑中的 Ca 2+ 信号进行体内成像中的实用性。这些数据表明,制造基因敲除头足类动物系的可行性,可用于对这些行为复杂的生物体的神经活动进行实时成像。
密歇根州立大学和夏威夷大学马诺阿分校的研究人员一直在寻找线索,以解释为什么有些珊瑚会白化,而有些却能抵抗白化,这些信息可能有助于珊瑚礁在未来更好地抵御海水变暖。研究小组使用质谱仪分析了珊瑚的生物化学性质,以了解抵抗白化和易受影响的珊瑚的区别。科学家发现,珊瑚中生活着两种不同的藻类群落。藻类细胞内含有称为脂质的化合物。脂质虽然“脂质”一词有时被用作脂肪的同义词,但脂肪是脂质的一个子类。脂质还包括油、蜡、某些维生素(如 A、D、E 和 K)、激素以及大部分非蛋白质组成的细胞膜。脂质不溶于水。研究人员的分析检测到了两种不同的脂质配方。
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
©作者2024。由牛津大学出版社代表FEMS出版。这是根据Creative Commons Attribution许可条款(http://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
研究人员使用高分辨率 Ganymede™ 系统,重点展示了视网膜新生血管 (RNV) 如何影响眼睛的结构。图 1 显示了白化兔的正常视网膜。图 2 显示了色素兔的正常视网膜。图 3 显示了患有 RNV 的白化兔。图 4 显示了患有 RNV 的色素兔。视网膜血管 (RV)、神经纤维层 (NFL) 和视网膜前纤维血管膜 (PFM) 也进行了标记。
结果和讨论:在总共617个共培养Calli中,21(3.4%)再生芽表现出三种不同的表型:白化,嵌合和浅绿色;与野生型非转化的再生芽相比。在白化芽中,总叶绿素含量大大降低,并且在嵌合芽中显着降低。在六个CAS9基因确认的再生芽中,两种芽表现出由于插入/缺失(Indels)和ACPDS靶点位置和周围的基于替代的突变而引起的白化表型。深度扩增子测序显示两个SGRNA之间的indel频率显着,范围从1.2%到63.4%,以及53.4%的替代频率。ACPDS基因的突变产生了可检测到的白化病表型,因此确定了ACPDS基因的成功编辑。这是第一次在洋葱中成功建立了CRISPR/CAS9介导的基因组编辑方案,而ACPD基因作为一个例子。这项研究将为研究人员提供进一步的洋葱基础研究和应用研究的必要动力。
摘要背景:小脑皮层负责协调运动、适应特殊条件并参与存储记忆。该皮层会经历与年龄相关的病理变化,表现为皮层厚度下降、神经元丢失(特别是浦肯野细胞)、星形胶质细胞肥大和增生以及氧化状态改变。这些变化是导致各种老年病的原因。本研究旨在评估小脑浦肯野细胞和星形胶质细胞的组织学变化,并确定白化大鼠中丙二醛 (MDA) 和谷胱甘肽 (GSH) 与年龄的关系,并找出细胞变化与氧化状态之间的可能相关性。方法:处死两组白化大鼠(3-6个月和22-26个月),切除小脑,分成三部分。第1部分