侵入性真菌感染每年在全球造成超过160万患者,由于抗真菌药物数量有限(偶氮,echinocandins和polyeners)以及抗真菌耐药性的出现,因此难以治疗。转录因子CRZ1是细胞应激反应和毒力的关键调节剂,是一个有吸引力的治疗靶标,因为该蛋白在人类细胞中不存在。在这里,我们使用了CRISPR-CAS9方法在两个抗Caspofungin的c临床分离株中产生同基因CRZ1Δ菌株。glabrata分析了该转录因子在非脊椎动物(Galleria mellonella)和脊椎动物(小鼠)念珠菌病模型中对eChinocandins,胁迫耐受性,生物膜的形成和致病性的敏感性的作用。在这些临床分离株中,CRZ1破坏恢复了体外和体内模型中echinocandins的敏感性,并影响其氧气应激反应,生物膜形成,细胞大小和致病性。这些结果强烈表明,考虑到抗真菌抗性的出现和可用的抗真菌药物数量少,CRZ1抑制剂可能在针对真菌感染的新型雌激素中起重要作用。
在本文中,我们应对基于离线手写的对比损失 - 十个签名验证模型的白盒假阳性对抗性攻击的挑战。我们采用了一种新颖的攻击方法,该方法将攻击视为紧密复制但独特的写作风格之间的样式转移。为了指导欺骗性图像的产生,我们引入了两个新的损失函数,通过扰动原始样品和合成样品的嵌入向量之间的欧几里得距离来提高抗差成功率,同时通过降低生成图像和原始图像之间的差异来确保最小的扰动。我们的实验证明了我们的方法在白框攻击基于对比度损失的白框攻击中的最新性能,这是我们的实验所证明的。与其他白色盒子攻击方法相比,本文的主要内容包括一种新颖的假积极攻击方法,两种新的损失功能,手写样式的有效风格转移以及在白盒子假阳性攻击中的出色性能。
我们提出了一种新的方法,通过将统计模型检查(SMC)与过程挖掘(PM)集成,以验证软件产品线(PL)模型。我们考虑了来自工程领域的面向功能的语言QFLAN。QFLAN允许对配备丰富的跨树和定量约束以及动态PL(例如分阶段配置)的方面进行建模。这种丰富性使我们能够轻松获得具有无限状态空间的模型,呼吁基于仿真的分析技术,例如SMC。例如,我们使用一个带有无限状态空间的运行示例。SMC是基于系统动力学样本的产生的分析技术家族。SMC的目的是估算一个系统的属性(例如,安装功能)或其中数量的期望值(例如,研究家族的产品的平均价格)。相反,PM是一个数据驱动的技术家族,它使用在执行信息系统执行中收集的日志来识别和推理其基础执行过程。这通常涉及识别和推理过程模式,瓶颈和改进的可能性。在本文中,据我们所知,我们首次提出了在副产品
代谢途径建模在药物设计中发挥着越来越重要的作用,因为它可以让我们更好地了解生物体代谢中潜在的调控和控制网络。然而,尽管该领域取得了快速进展,但途径建模对研究人员来说可能成为一场真正的噩梦,尤其是在实验数据很少或途径高度复杂的情况下。在这里,开发了三种不同的方法来模拟溶组织阿米巴原虫糖酵解的第二部分作为应用示例,并成功预测了最终的途径通量:一种包括详细的动力学信息(白框),另一种添加了调整项(灰框),最后一种使用人工神经网络方法(黑框)。之后,每个模型都用于代谢控制分析和通量控制系数确定。该途径的前两种酶被确定为在通量控制中发挥作用的关键酶。这项研究揭示了这三种方法对于在代谢途径建模领域根据现有数据构建合适模型的重要意义,对生物学家和建模者都有用。