电力负荷表 房屋平方英尺 X 3(瓦) 千瓦 小家电电路@1500瓦/个(最少两个) 千瓦 洗衣电路@1500瓦/个 千瓦 炉灶 千瓦 灶台 千瓦 烤箱 千瓦 电热水器 千瓦 电动干衣机 千瓦 垃圾处理器 千瓦 微波炉 千瓦 电动汽车充电器 千瓦 其他负荷 千瓦 小计: 千瓦 采暖通风和空调 (HVAC) 千瓦 1. 小计的前 10 千瓦@100% 千瓦 2. 小计的余数@40% 千瓦 3. 空调负荷@100% 千瓦 总负荷(添加 1-3 行) 千瓦
1) Overview ....................................................................................................................................................2 [Consolidated Financial Results (Core Base)] ..................................................................................................2 [Revenue by Business Unit] ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... Forecasts of Consolidated Financial Results and Other Forward-Looking Statements ......9 (4) Information about Return to Shareholders .....................................................................................................10 2.Condensed Interim Consolidated Financial Statements with Primary Notes ........................................................11
• 2020 年和 2040 年按类型划分的全球平均 H2 生产成本(美元/千克) • 2000 年至 2040 年按国家和地区划分的装机容量和宣布的绿色氢项目管道(兆瓦) • 2020 年至 2040 年宣布的绿色 H2 项目管道(兆瓦) • 32 个宣布的电解槽容量超过 100MW 的项目 • 案例研究:Air Liquide Bécancour • 案例研究:NEOM 绿色氨 • 国家级 LCOH 成本假设 • 电解槽 CAPEX PEM 和碱性 2020 年 - 2040 年(美元/千瓦) • PEM 电解槽 CAPEX 预测,旧的 2019 年 10 月与新的 2020 年 7 月预测,2020 年 - 2040 年(美元/千瓦) • PEM 和碱性电解槽 CAPEX 预测2020 年至 2040 年不同电价和负荷小时数下的绿氢平准成本(美元/千克) • 2019 年和 2030 年各国和技术的可再生能源平准化能源成本(美元/兆瓦时) • 实现低于 30 美元/兆瓦时的可再生电价所需的 2019 年第四季度可再生能源平准化能源成本降低百分比 • 2020 年至 2040 年各国的天然气假定价格(美元/百万英热单位) • 2020 年至 2040 年各国灰氢成本预测(美元/千克) • 现有和已宣布的蓝氢项目清单 • 2020 年至 2040 年各国蓝氢和灰氢成本(美元/千克)
去年,系统和本地加权价格之间的差距有所缩小,这一趋势在 2020 年延续。本地 RA 的加权平均价格为 4.96 美元/千瓦月,而系统 RA 容量的加权平均价格为 4.75 美元/千瓦月。本地 RA 价格也有所上涨——2020 年本地地区的加权平均价格从湾区的 3.86 美元/千瓦月到斯托克顿的 7.70 美元/千瓦月不等,而 85 百分位价格从未指定的 PG&E 本地容量的 5.50 美元/千瓦月到 Sierra 的 9.25 美元/千瓦月不等。与前几年报告的价格相比,这些价格有显著增长。对于灵活容量,价格并不高于系统容量的价格。2020 年灵活容量的加权平均价格为 4.65 美元/千瓦月,而非灵活系统容量的加权平均价格为 4.81 美元/千瓦月。
摘要。本研究探讨了在智能电网中使用模糊逻辑创建和执行能源管理方法,目的是有效地整合可再生能源。该研究采用了经验数据,包括可再生能源生产信息、能源使用变化、电池存储的当前状态以及采取的控制措施。数据分析表明,可再生能源存在显著差异,即太阳能从 350 千瓦到 410 千瓦,风能从 180 千瓦到 220 千瓦,水能从 120 千瓦到 150 千瓦。不同部门的能源消耗呈现出不同的模式。住宅消费从 250 千瓦到 275 千瓦,工业需求从 300 千瓦增加到 330 千瓦,商业消费从 200 千瓦波动到 225 千瓦。电池存储状态出现变化,电池1从150 kWh增加到165 kWh,电池2在180 kWh和195 kWh之间波动,电池3维持在200 kWh至215 kWh的稳定范围内。基于模糊逻辑的控制动作的使用展示了灵活性,其中控制动作1的范围从0.6到0.8,控制动作2在0.5到0.7之间波动,控制动作3在0.6到0.9之间变化。该研究强调了基于模糊逻辑的能源管理系统的灵活性和快速响应。它可以实时调整控制动作以适应可再生能源发电、消费模式和电池存储的变化。这表明它有潜力优化能源流动并确保智能电网中的电网稳定性,促进可再生能源的有效整合。
注:资本支出假设如下:太阳能光伏 (PV):2030 年为 270-690 美元/千瓦,2050 年为 225-455 美元/千瓦;陆上风电:2030 年为 790-1435 美元/千瓦,2050 年为 700-1070 美元/千瓦;海上风电:2030 年为 1730-2700 美元/千瓦,2050 年为 1275-1745 美元/千瓦;电解器:2030 年为 380 美元/千瓦,2050 年为 130 美元/千瓦。加权平均资本成本:按 2020 年值计算,不含各地区技术风险。土地可用性考虑了几个禁区(保护区、森林、永久湿地、农田、城市地区、5% [光伏] 和 20% [陆上风能] 的坡度、人口密度和水资源可用性)。资料来源:IRENA,2022 年。全球氢贸易以实现 1.5C 目标。第一部分:2050 年贸易展望和未来发展方向
注:资本支出假设如下:太阳能光伏 (PV):2030 年为 270-690 美元/千瓦,2050 年为 225-455 美元/千瓦;陆上风电:2030 年为 790-1435 美元/千瓦,2050 年为 700-1070 美元/千瓦;海上风电:2030 年为 1730-2700 美元/千瓦,2050 年为 1275-1745 美元/千瓦;电解器:2030 年为 380 美元/千瓦,2050 年为 130 美元/千瓦。加权平均资本成本:按 2020 年值计算,不含各地区技术风险。土地可用性考虑了几个禁区(保护区、森林、永久湿地、农田、城市地区、5% [光伏] 和 20% [陆上风能] 的坡度、人口密度和水资源可用性)。资料来源:IRENA,2022 年。全球氢贸易以实现 1.5C 目标。第一部分:2050 年贸易展望和未来发展方向
2020 年,系统 RA 和本地 RA 的加权价格之间的差距有所缩小。2021 年,系统 RA 的加权平均价格超过了本地 RA。2021 年本地 RA 的加权平均价格为 6.49 美元/千瓦月,而系统 RA 容量的价格为 7.02 美元/千瓦月。本地 RA 价格也大幅上涨——2021 年本地地区的加权平均价格从洪堡的 6.04 美元/千瓦月到克恩的 9.24 美元/千瓦月不等,而 85 百分位价格从圣地亚哥和弗雷斯诺本地容量的 7.50 美元/千瓦月到 Big Creek-Ventura 的 8.88 美元/千瓦月不等。虽然加权平均值有所增加,但与上一年相比,某些地区的 85 百分位价格有所下降,而其他地区的 85 百分位价格有所上涨。对于灵活容量,价格总体上略低于系统容量价格。 2021 年灵活容量的加权平均价格为每千瓦月 5.27 美元,而非灵活系统容量的加权平均价格为每千瓦月 6.48 美元。
摘要:用传统质谱法分析核酸时,反离子会造成质量不均匀,限制可分析的 DNA 大小,因此分析起来十分复杂。在这项研究中,我们使用电荷检测质谱法分析兆道尔顿大小的 DNA,从而克服了这一限制。使用正模式电喷雾,我们发现 DNA 质粒的电荷分布截然不同。低电荷群体的电荷像紧凑的 DNA 折纸一样,而高电荷群体的电荷分布范围很广。对于高电荷群体,测量质量与 DNA 序列预期质量之间的偏差始终在 1% 左右。对于低电荷群体,偏差更大且变化更大。高电荷群体归因于随机卷曲配置中的超螺旋质粒,其宽电荷分布是由随机卷曲可以采用的丰富多样的几何形状造成的。高分辨率测量表明,随着电荷的增加,质量分布会略微向低质量方向移动。低电荷群体归因于质粒的浓缩形式。我们认为凝聚形式是由熵捕获引起的,其中随机线圈必须经历几何变化才能挤过泰勒锥并进入电喷雾液滴。对于较大的质粒,剪切(机械破碎)发生在电喷雾期间或电喷雾界面。降低盐浓度可以减少剪切。■简介质谱 (MS) 在核酸表征中发挥着重要作用。1、2 电喷雾和基质辅助激光解吸/电离 (MALDI) 都已用于将 DNA 和 RNA 离子引入气相进行分析,但 MALDI 与飞行时间 (TOF) MS 的组合应用最为广泛。例如,MALDI-TOF 继续用于表征单核苷酸多态性 (SNP),这可提供有关疾病易感性遗传特征的重要信息。对于突变和 SNP 的分析,只需要分析小于 25 nt 的小寡核苷酸(核苷酸)。这是幸运的,因为反离子(通常是 Na +、K + 或 Mg 2+)与 DNA 和 RNA 的高电荷磷酸骨架结合,导致峰宽和灵敏度降低。已经开发出几种方法来脱盐核酸。3、4 然而,由金属离子加合引起的异质性会随着尺寸的增加而增加,并且由于电荷状态分辨率的丧失,常规 MS 不再可能分析兆道尔顿大小的 DNA 和 RNA 物种。另一方面,新型疫苗和基因疗法等新兴疗法携带着大量的遗传物质。基因组完整性对于有效的治疗是必不可少的,对完整基因组的质量测量提供了一种快速而直接的方法来检查缺失和添加。5
劳斯莱斯 250/RR300 型(涡轴发动机) 型号 T-O 单位/变体 功率等级 应用 机身 印度尼西亚航空航天 NBO-105 2 KAL 500D/MD 1 MBB BO 105 1 MD 直升机 500D/E 1 MBB BO 105 VBH; PAH-1 1 250-C20F 420 轴马力(313 千瓦) 欧洲直升机公司 AS 355 2 250-C20J 420 轴马力(313 千瓦) 贝尔直升机德事隆 206B-III JetRanger 1 贝尔直升机德事隆 TH-57 Sea Ranger 1 贝尔直升机德事隆 TH-67A Creek 1 250-C20R 450 轴马力(335 千瓦) 阿古斯塔 NH520N 2 贝尔直升机德事隆 206 LT Twin Ranger 2 贝尔直升机德事隆鹰眼 2 欧洲直升机公司 AS 355 2 250-C20R/1 450 轴马力(335 千瓦) 阿古斯塔 A109C; A109 C Max 2 250-C20R/2 450 轴马力(335 千瓦) 贝尔直升机德事隆 206B-III JetRanger 1 贝尔直升机德事隆 206L Long Ranger 1 卡莫夫 Ka-226 2 MD 直升机 500D/E 1 MD 直升机 520NOTAR 1 250-C20R/4 450 轴马力(335 千瓦) 贝尔直升机德事隆 206B III JetRanger 1 250-C20W 420 轴马力(313 千瓦) 恩斯特龙 480 1 施魏策尔 330/330SP;333; RQ-8A 1 250-C28B 500 轴马力(372 千瓦) 贝尔直升机 德事隆 206L-1 远程直升机 1 250-C28C 500 轴马力(372 千瓦) 欧洲直升机公司 BO 105LS 2 MD 直升机 530F 1 250-C30G/2 557 轴马力(415 千瓦) 贝尔 230 2 250-C30P 600 轴马力(447 千瓦) 贝尔直升机 德事隆 206L-III、IV 1 250-C40B 613 轴马力(457 千瓦) 贝尔直升机 德事隆 430 2 250-C47B 600 轴马力(447 千瓦) 贝尔直升机 德事隆 407 1 250-C47M 600 shp (447 kW) MD 直升机 600NOTAR 1 RR300 300 shp (223 kW) Robinson R66 1 价格范围。以下是 250 系列发动机的成本估算(以 2011 年美元计算):250-C20/28 系列,225,000-255,000 美元;C30/C40 系列,285,000-335,000 美元;T703 系列,300,000-325,000 美元。