使用旋转心轴制造管状 MEW 支架的能力越来越受到人们的兴趣,并已在各种工作中得到证实,[7-22] 拟议的组织工程应用包括血管、[9,14,17,22] 骨骼、[10,17] 肾脏 [12] 和心脏瓣膜。[13] 最常见的是具有对齐纤维网格 [16,17] 和交叉影线(或“ 菱形 ”)图案 [18] 的管状支架。MEW 纤维图案化和支架力学之间的密切关系在许多研究中具有重要意义,在这些研究中,机械行为会影响所选组织工程应用的生物力学适用性,例如复制心脏瓣膜 [21,23] 或肾小管等组织的力学。 [12] 此外,支架的几何形状可以影响接种细胞的生物反应,包括附着、[24] 排列、[25] 和组织成熟。[26,27] 虽然新兴研究正在扩大可在旋转心轴上打印的图案范围,以包括支架状几何形状,[9]
层次上的多孔结构结合了微孔度,中膜性和微孔度,以增强孔隙可及性和运输,这对于开发高性能材料至关重要,用于生物制造,食物和药物应用。这项工作旨在通过3D打印Pickering型高内相乳液(Pickering-iphipes)来开发4D打印的智能分层大孔结构。关键是表面活性(羟基丁基化)淀粉纳米材料的液化,包括淀粉纳米晶体(SNCS)(从蜡质玉米淀粉通过酸水解)或淀粉纳米颗粒(SNP)(SNPS)(通过超声处理获得)。通过使用冷等离子体技术嫁接1,2-叔丁烯氧化物来增强其表面疏水性,改善其聚集,从而获得胶体稳定的拾音器,从而通过每种表面稳定的凝固性凝固性凝聚力来提高其表面疏水性,从而提高其表面疏水性,从而增强其表面疏水性,从而提高其表面疏水性,从而提高其表面疏水性,从而提高其表面疏水性,从而实现来制造功能化淀粉材料的创新程序。 在加入了修改后的SNC或SNP之后,开发了液滴的液滴,从而形成了类似凝胶的结构。 这些皮克林船的3D打印开发了一种高度相互连接的大孔结构,具有具有热响应行为的自组装特性。 作为一种潜在的药物输送系统,这种热重孔3D结构在体温下提供了较低的临界溶液温度(LCST)型相变,可用于生物活性化合物的智能释放领域。来制造功能化淀粉材料的创新程序。在加入了修改后的SNC或SNP之后,开发了液滴的液滴,从而形成了类似凝胶的结构。这些皮克林船的3D打印开发了一种高度相互连接的大孔结构,具有具有热响应行为的自组装特性。作为一种潜在的药物输送系统,这种热重孔3D结构在体温下提供了较低的临界溶液温度(LCST)型相变,可用于生物活性化合物的智能释放领域。
左边的流程图提供了一个假设项目的高级概述以及实施它可能需要采取的步骤。作为可行的项目得到确认并提前,将在确定最终行动方案的迭代过程中重新接触公众。进行资本改进,这意味着要对提出的详细信息进行输入,例如项目限制,可访问性和设计功能。为了进行分区修正案,这将包括机会与允许/条件用途,区域边界和密度的拟议法规分享反馈。