f三层f int 2 2 4 4 f总计0 f int comp 2 1,3 8,3 8,4 64 e h u a k u a k u a k u b g h e k a k a b u k a a b a a= + - + + + - + - (19)
这是预先发布的版本。本文档是公认的手稿版本的已发表作品,该作品以ACS Nano的最终形式出现,版权所有©2020 American Chemical Society在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsnano.9b08928。
锂离子电池(LIB)电池的制造遵循一个复杂的过程链,在该过程链中,单个过程影响后续过程。同时,对电池性能,可持续性和成本尤其增加了要求,迫使创新电池材料,生产技术和电池设计的开发。日历过程直接影响电极的体积密度,因此会影响电池电池的体积密度。日历仍然具有挑战性,因为它会在电极中引起高应力,从而导致缺陷,从而增加排斥率。电极材料与过程之间的相互作用以及缺陷的形成仍未完全了解,尤其是在使用新的材料系统时。在这种情况下,钠离子电池(SIB)是一种锂后电池系统,是克服常规LIB的局限性的有前途的选择。因此,本文介绍了第一种材料和机器独立的方法来描述和理解缺陷类型的纵向皱纹,该方法主要出现在电极的未涂层电流收集器边缘和运行方向上。目的是根据其几何形状系统地表征纵向皱纹。自动数据采集是通过激光三角测量系统和3D扫描系统进行的。几何值是根据原始数据计算的,并与所选的过程参数相关。无论材料如何,该方法都是适用的,如SIB的LIB和硬碳阳极的NMC811阴极的示例性结果所示。通过使用两个不同的试点日历,可以显示数据采集可以独立于机器进行。提出的方法有助于寻找解决方案,以避免在任何电池电极中纵向皱纹,从而降低排斥率。
胆固醇液晶(CLC)相。[1] CLC相的最引人注目的特征是由于光的选择性反射,其异常的光旋转功率和结构颜色。[2]结构颜色是光干扰现象的结果,例如由周期性纳米结构引起的Bragg反射和棒状分子的平均折射率。CLC的初始缺口位置可以通过公式λ0= n×p 0表示,其中λ0是初始缺口位置,n是平均折射率,P 0是初始音高长度。[3]自然采用了这种螺旋纳米结构,向花瓣,蝴蝶翅和甲虫的表皮提供各种颜色信息。[4]灵感来自此类天然光子纳米结构,许多研究人员使用光子晶体,等离子体纳米结构和元素制造人造结构颜色。[5]这些天然螺旋纳米结构的实例和人造结构颜色的研究已用于设计具有先进功能的材料,例如在光学传感,伪装和反伪造技术中使用的材料。[6]
二维材料中的不均匀和三维应变工程为控制应变敏感光子性能的应变设备开辟了新的途径。在这里,我们提出了一种通过皱纹单层WSE 2来调整应变的方法,该单层WSE 2连接到15 nm厚的ALD支撑层并压缩软底物上的异质结构。aldfim sti tipers 2D材料,可以通过光学分解的微米尺度皱纹,而不是纳米尺度缩放和折叠。使用光致发光光谱法,我们显示皱纹引入了47 MeV对带隙的周期性调节,与皱纹处的 +0.67%拉伸应变的应变调制相对应,到槽在槽中的-0.31%压缩应变。此外,我们表明,循环底物应变机械地重新发现了皱纹和结果带调的大小和方向。这些结果铺平了基于紧张的2D材料的可伸缩多发性设备的道路。
图3暴露于紫外线的皱纹模式的产生/擦除的进化过程。(a – e)分别暴露于0、5、10、15和20分钟的平滑样品时,皱纹模式的生成过程的3D AFM图像。将这些样品加热至120°C。(365 nm UV的光强度约为3.5 mW/cm 2)。(f)暴露于254 nm UV光的皱纹图案的3D AFM图像持续5-7.5分钟(254 nm UV光强度约为3.5 mW/cm 2)。(g)波长(λ,黑线,左垂直轴)和皱纹的振幅(a,红线,右垂直轴)是UV光照射时间的函数。(H)An的二聚化过程的动力学。uv-vis光谱在豌豆/ABA膜中ABA之间的二聚化反应。混合溶液在石英板上旋转,并将样品暴露于365 nm的紫外线,分别为0、2、4、6、8、10、12、14、16分钟。样品被原位测量。
皱纹鉴定。这些技术中的大多数对典型的皱纹“副作用”很敏感。虽然这些副作用可以通过传统的 NDT 技术检测到,但它们并不是导致强度降低的驱动参数。皱纹可能伴随着表面凸起、不同的层间距、树脂池和局部刚度的变化而出现。这些特征可以分别通过目视检查、由于声速变化而产生的超声波、由于树脂池反射而产生的超声波和导波来检测。然而,就强度而言,重要的参数是纤维的曲率。很少有方法对此参数敏感。一个例外是布里斯托尔大学史密斯教授团队目前开发的一种技术。该技术涉及将超声波频率“调整”到层压板的周期性结构中,并可以从接收信号的相位信息中恢复纤维的曲率。虽然该技术在航空航天领域已显示出良好的效果,但 Vestas 正在与布里斯托尔大学合作,使该方法适应风级 GFRP 的特性。
扫描统计,通过/失败和缺陷位置电子自动数据收集,数据保护和数据保护不完整的密封,包含,皱纹,皱纹,频道缺陷,未对准的密封误差,分层或泡沫故障率,缺陷位置500微米数据流,拒绝I/o信号密封式测试头,带有L-SCAN窗口窗口窗口窗口窗口,带有L-SCAN窗口窗口,带有触摸屏的5.机柜100-240 VAT 50/60 Hz测试头,带有操作员界面的控制面板:25IB