摘要。由于人为强迫,水生系统的快速变化正在为有机体和社区带来挑战性的条件。现在需要更好地理解环境压力源的相互作用,以及将来,这对于确定生态系统对这些扰动的响应至关重要。这项工作描述了一个自动化的Ex eriposm扰动系统,该系统可以在受控设置中操纵水生媒体的几个变量。此扰动系统部署在Kongsfjorden(Svalbard);在该系统中,将来自峡湾的环境水加热并与多因素设计中的淡水混合,以研究中库群岛中混合kelp群落对未来北极条件的反应。该系统采用了一种拟定的动态偏移场景,其中将标称的调为升温作为设定值以高于实时环境条件的设定值,以模拟未来的变暖。以类似的方式应用了新鲜度成分:盐度的降低是基于峡湾中温度 - 平衡关系跟踪温度偏离的。该系统充当自动混合歧管,调整了温暖和冷藏的环境海水的流量,无操纵的环境海水和淡水熟悉,作为单个混合介质的单一来源到单个Meso-Cosms。这些条件是通过连续
氮固定子是微生物的重要生理组之一。它们在共生和自由上吸收大气氮[1,2,3]。在Ashby培养基中生长的细菌是自由生活的有氧氮固定剂。它们还从土壤空气中吸收氮,并用氮气富集土壤。在氮平衡中非常重要。因为土壤中的氮,包括矿物氮,是最小因子[5,6,8]。氮缺乏对土壤生育能力以及植物生长和发育产生负面影响。同时,氮气积累是一个非常复杂的过程,很难实施它。氮流失的简易通过在氮平衡中起着非常负面的作用。氮。因此,土壤中有机和矿物氮的量大大减少。因此,在没有赤字的情况下保持氮平衡是一个非常困难的问题[4,9,7,10,11]。这些氮固定器的积极作用很大。但是,许多因素可能对氮固定器的数量和活性产生正面或负面影响。这种情况也存在于布哈拉沙漠草地的冲积土壤中。布哈拉绿洲草地的冲积土有不同程度的盐度。非盐草草地冲积土壤非常罕见[12,13,14,15,16,17]。这种情况还会影响自由生活有氧氮固定器的生长和发展
这项研究旨在确定生物代理(Trichoderma hazianum)的好处,以减轻NaCl应力对日期棕榈分支的不利影响(Phoenix dactylifera L.)氯化钠(NaCl)不同浓度的浓度(NaCl)(NACL)(NaCl)(0、5、10、15、20、20、20、20、20和25 ds M -1)与颜色相关的颜色效果上的颜色是相互影响的。在存在和不存在生物代表t. harzainum的情况下,酶,总脯氨酸,总酚类和过氧化氢分支。研究的结果表明,从10-20 ds m -1中提高NaCl浓度并不影响马铃薯葡萄糖琼脂(PDA)培养基中Harzianum的菌丝生长菌落。结果表明,光合色素(叶绿素和类胡萝卜素),过氧化物酶和过氧化氢酶的水平显着增加,蛋白质酶的总脯氨酸和总酚含量在日期棕榈中的分支中使用T. harzainum的应用。较高浓度的NaCl导致更高水平的氢过氧化。此外,盐刺激了抗氧化酶(例如过氧化酶和过氧化物酶)的产生。该研究表明,施用生物代理t. harzianum后,盐胁迫对日期棕榈分支的负生理和生化作用显着降低。这项研究表明,trichoderma具有促进植物生长的能力,可用于增加NACL应力条件下棕榈分支的生长。
©2021 Elsevier Ltd.此手稿版本可根据CC-BY-NC-ND 4.0许可(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)提供。
简单的摘要:土壤盐度在全球范围内增加,是影响土壤生育能力和农业生产力的主要环境问题。在这项研究中,我们表明,由于鹰嘴豆根渗出液的酚类化合物的显着变化,盐度 - 鸡蛋中心共生的早期事件受到盐度的负面影响,这又影响了其微生儿病的感知和反应。此外,事实证明,使用原生豆类到干旱地区的豆科植物的非毛虫结节内生菌是改善豆科植物生长并增强盐度下的中虫 - chickpea sombiosis的有前途的策略。总而言之,这项研究有助于扩展我们对盐度对豆科植物共生的有害影响的了解,并突出了有益的结节细菌作为生物学工具的潜在使用,以维持更健康的豆科植物 - 豆类 - 豆类 - 从而增强盐含量下盐含量的盐含量的生长。
...观察数据表明,真正的AMOC位于双态度中,这意味着相对接近临界点。相比之下,在大多数模型中,AMOC处于远离临界点的单个稳定状态(请参阅Weijer等人的评论,2019年)。原因显然是模型中大西洋盐度分布中微妙的偏见。可以将这种盐度分布推向更现实的,观察到的盐度值,而不是让盐度在计算的降雨,蒸发和洋流的影响下自由进化。在气候模型中完成此操作时,AMOC在二氧化碳浓度的情况下崩溃了,而在原始的未调节模型中仍然保持稳定(Liu等,2017)。
•土地变化•植被类型(FFIB)•植被类型(VCT)•洪水深度•估计的年损坏,美元•估计的年结构损害•盐度•盐度•水位•水位•总悬浮固体•批量下载输入和参考文件
土壤盐度在原发性和次要盐度中有区别。主要的是岩石瓦解的自然过程的结果,该过程释放可溶性盐,例如钠,钙和镁,硫酸盐和碳酸盐,硫酸盐和碳酸盐,通过风和雨水沉积在土壤溶液中。在此过程中最容易运输的盐是氯化钠。这项研究研究了盐度应激对盐敏感和耐盐降低品种(通常称为mung豆)的影响。在培养皿中进行了实验,并应用了120 mM NaCl。这项研究揭示了V. radiata的盐敏感和耐盐线的明显差异。盐敏感品种的芽和根新鲜和干生物量的降低。相比之下,耐盐线的生物量最小降低(新鲜干燥)。07006MB和08009MB在120mm NaCl下的新鲜和干芽生物量略有增加。同样,在07006MB和14005MB中,根新鲜生物质略有增加,但是与120 mm NaCl以下的其他线相比,在14005MB线中观察到干根生物量最大。这些发现为耐盐品种的适应性策略提供了宝贵的见解,为有针对性的育种计划提供了旨在增强这种具有经济意义的豆类盐度弹性的目标的基础。总而言之,这项研究加深了我们对盐度应激对Vigna radiata线生长模式的影响的理解。它为开发能够在盐水环境中繁荣发展的强大农作物品种奠定了基础。
摘要:Passiflora edulis f. flavicarpa(黄色西番莲)是一种高价值热带作物,既可作为水果,也可作为营养品销售。随着美国水果产量的上升,必须研究盐度在半干旱气候下对作物的影响。我们评估了灌溉水盐度、叶龄和干燥方法对叶片抗氧化能力 (LAC) 和植物遗传反应的影响。植物在室外蒸渗仪槽中生长三年,水的电导率分别为 3.0、6.0 和 12.0 dS m − 1。Na 和 Cl 均随着盐度的增加而显著增加;3.0 和 6.0 dS m − 1 下的叶片生物量相似,但在 12.0 dS m − 1 下显著降低。盐度对 LAC 没有影响,但新叶的 LAC 高于老叶。低温烘干 (LTO) 和冷冻干燥 (FD) 的叶子具有相同的 LAC。对十二种转运蛋白基因(其中六个参与 Na + 转运,六个参与 Cl − 转运)的分析表明,根部的表达量高于叶子中的表达量,这表明根部在离子转运和控制叶子盐浓度方面起着关键作用。百香果对盐度的中等耐受性和其高叶子抗氧化能力使其成为加利福尼亚州的潜在新水果作物,也是营养保健品市场的黄酮类化合物的丰富来源。低温烘干是冷冻干燥的潜在替代方案,可用于准备百香果叶子的氧自由基吸收能力 (ORAC) 分析。
属于属于生理组的微生物具有相似的功能并参与特定活动。重要的土壤微生物是参与氮固定,植物残留降解,硝化,氨化和硝化过程的微生物。它们主要属于细菌的分类类别。它们是在具有选择性进食的特定设置中找到的。,氨磷酸盐占据了最重要的占主导地位。氨餐剂确保通过参与氨化过程来保留氮的有机分子形成铵。肉肽琼脂用于培养和量化氨掺杂剂。此外,还进行了培养基中所有微生物的普查。因此,在上一章中,还以牺牲细菌为代价考虑了氨云母。