盐胁迫是多次毁灭性的非生物胁迫,在干旱之后,限制了全球水稻的产量。盐度耐受性的遗传增强是在受盐影响区域实现产量提高的一种有前途且具有成本效益的方法。盐度耐受性的繁殖是具有挑战性的,因为水稻对盐胁迫的反应具有遗传复杂性,因为它受遗传力较低和G×E相互作用高的次要基因的控制。众多生理和生化因素的参与进一步使这种复杂性变得复杂。针对绿色革命时代提高产量的强化选择和繁殖工作无意中导致盐度耐受性的基因座逐渐消失,并显着降低了品种遗传变异性。遗传资源的利用率有限和改善品种的狭窄遗传基础,导致平稳性,以应对现代品种的盐度耐受性。野生物种是扩大驯化水稻遗传基础的绝佳遗传资源。利用未充分利用的野生水稻亲戚的新基因恢复驯化过程中消除的盐度耐受性基因座可能会导致水稻品种的显着遗传增益。大米,Oryza rufinfifogon和Oryza Nivara的野生物种已在开发一些改良的水稻品种的开发中,例如Jarava和Chinsura Nona 2.预生产是准备在繁殖计划中利用的建筑材料的另一种途径。此外,增加获取序列信息的获取和增强对野生亲戚盐度耐受性基因组学的知识为在育种计划中部署野生水稻的部署提供了机会,同时克服了野生杂交中见证的跨不相容性和连锁阻力障碍。努力应针对野生水稻的系统收集,评估,表征和解密的耐盐机制
AI 人工智能 ANN 人工神经网络 ASA 应用科学协会 ATM 应用技术与管理 BEP 反向误差传播 BFHYDRO 边界拟合流体动力学模型 CRADA 合作研究与开发协议 DSS 决策支持系统 EFDC 环境流体动力学规范 EIS 环境影响声明 FCFWRU 佛罗里达州鱼类与野生动物合作单位 GaEPD 佐治亚州环境保护部 GPA 佐治亚州港务局 GUI 图形用户界面 LMS Lawler、Matusky 和 Skelly ME 平均误差 MLP 多层感知器 MSE 均方误差 M2M 模型到沼泽应用 NWIS 国家水信息系统 OLS 普通最小二乘法 PME 百分比模型误差 psu 实用盐度单位 Q 流量 RMSE 均方根误差 R 2 判定系数 SISO 单输入单输出 SNWR 萨凡纳国家野生动物保护区 SSE 误差平方和 SSR 状态空间重建 USACOE 美国陆军工程兵团 USFW 美国鱼类与野生动物管理局 USGS 美国地质调查局 WASP7 水资源评估与模拟程序 - 第 7 版 WES 水道美国陆军工程兵团实验站 WL 水位 XWL 潮汐范围
特质酵母处理 - 酵母+酵母菌植物高度(cm)59.16 66.51(+12)分支机构数量植物-1 05.00 06.13(+23)叶植物的数量-1 84.13 90.38(+07)叶(+07)叶(+07)叶(+2)19.83 23.83 23.13(+2工厂)种子植物-1 39.38 52.63(+34)10种种子的重量11.84 13.40(+13)干重植物-1 19.98 22.64(+13)种子产量植物-1 69.66 83.71(+20)个体值是在不同的酵母处理下的八个复制的平均值。值表明从对照处理(-yeast)到(+酵母)的百分比增加。
1.1 古尔本布罗肯旱地盐渍化管理计划 古尔本布罗肯旱地盐渍化管理计划的审查构成了古尔本布罗肯区域集水区战略 (RCS) 的一部分。RCS 为集水区的自然资源管理设定了总体战略方向。旱地盐渍化管理计划专门处理旱地盐渍化问题。这次审查很及时。它提供了借鉴过去十二年盐渍化计划实施经验的机会,并塑造了我们对旱地盐渍化带来的新挑战的应对措施。在过去五年中,我们对旱地盐渍化带来的威胁的理解有了显著提高。我们对盐在景观中流动过程的理解现在使我们能够更有效地确定需要工作的地方,并推荐所需的工作类型。古尔本布罗肯旱地盐渍化管理计划 (GBDSMP) 于 1989 年首次制定,作为当时公认的盐渍化问题的协调国家应对措施的一部分。1990 年,维多利亚州政府批准了该计划,并开始实施。最初的计划基于当时可用的知识,并假设确定的工程将恢复集水区的水文平衡。事后看来,这是永远无法实现的。实施 12 年后,旱地盐渍化仍然是集水区社区的主要关注点。最近的预测(DNRE,1999)表明,未来 100 年,集水区的很大一部分,特别是布罗肯平原和古尔本平原,可能会受到高水位和盐度的影响。墨累达令盆地委员会 (MDBC, 1999) 的修订估计表明,在 100 年的时间范围内,Goulburn Broken 集水区的旱地盐度每年将产生额外的 165,000 吨盐。这些额外的盐威胁着下游墨累河的状况,而墨累河是至关重要的水资源。旱地盐度的增加还威胁着集水区内的重要资产,包括水质、生产性土地、城市基础设施、遗址和生物多样性。MDBC 最近在州政府的同意下制定了山谷尽头目标,这大大增强了盐度管理的战略方法。制定这些目标是为了限制墨累河盐度的增加,这是在南澳大利亚州摩根的基准点测量的。已经为古尔本河和布罗肯河设定了山谷末端目标,这些目标现在为流域内的盐度管理提供了背景。解决古尔本布罗肯旱地盐度增加的问题需要彻底改变流域主要部分的土地使用方式。流域社区必须参与有关流域未来状况的讨论,并协商应对旱地盐度挑战的措施。应对旱地盐度问题的措施需要涵盖流域社区的愿望和区域发展目标。
由于印度洋的独特特征,因此对上海流,温度和盐度的准确模拟是一个主要的挑战。,例如,由于季风强,包括强烈的西部边界电流(例如索马里电流)的海洋循环随季节而变化很大。此外,在夏季季风季节,与大量降水有关的巨大河流在孟加拉湾产生了非常强的盐度分层,从而导致盆地东部和西部地区之间的大海洋盐度对比。与其他海洋盆地的东部边界不同,印度洋东南部(Leeuwin电流)的边界电流将极端向上流向盛行的平等地面风。大规模海洋通用循环模型对这些独特特征的仿真近年来主要是由于使用涡流水平网格量表(1/10°或更精细),从而得到了明显的改进。
摘要。土壤盐分介导微生物和土壤过程,如土壤有机碳 (SOC) 循环。然而,土壤盐分如何通过塑造细菌群落多样性和组成来影响 SOC 矿化仍然难以捉摸。因此,沿盐梯度(盐度为 0.25%、0.58%、0.75%、1.00% 和 2.64%)采集土壤样本并培养 90 天,以研究 (i) SOC 矿化(即棉籽粉作为底物引起的土壤启动效应)和 (ii) 负责任的细菌群落,方法是使用高通量测序和 13 C 同位素的天然丰度(以分离棉籽粉衍生的 CO 2 和土壤衍生的 CO 2 )。我们观察到在培养的前28天中出现负向启动效应,而在56天之后转为正向启动效应。早期的负向启动可能是由于优先利用棉籽粕所致。随后的正向启动随着盐度的增加而降低,这可能是由于高盐度土壤中微生物群落的α多样性降低所致。具体而言,沿盐度梯度的土壤pH值和电导率(EC)是调节微生物群落结构从而调节SOC启动的主要变量(通过基于距离的多元分析和路径分析估计)。通过采用双向正交投影到潜在结构(O2PLS),将启动效应与特定的微生物类群联系起来;例如,变形菌门(Luteimonas、Hoeflea 和 Stenotrophomonas)是归因于底物诱导的启动效应的核心微生物属。在这里,我们强调盐度的增加降低了微生物群落的多样性,并转移了优势微生物(放线菌和 Pro-
沿海水域的浮游微生物构成了食物网和生物地球化学循环的基础。波罗的海地区具有明显的环境梯度,是典型的沿海环境。然而,迄今为止,对这些环境梯度的微生物多样性评估既缺乏分类范围,也缺乏空间和时间尺度的整合。在这里,我们使用 DNA 宏条形码分析了 398 个样本的原生生物和细菌多样性,这些样本与波罗的海和卡特加特海峡-斯卡格拉克海峡的国家监测同步。我们发现,与其他环境因素不同,盐度对细菌群落组成的影响大于对原生生物群落组成的影响。同样,贝叶斯模型表明,在较低(<9 PSU)和较高(>15 PSU)的咸水盐度中,细菌谱系出现的可能性都小于原生生物。尽管如此,原生生物的 α 多样性还是随着盐度的增加而增加。细菌 α 多样性的变化主要是季节性的,与冬季通过垂直混合引入深水生物群有关。我们认为原生生物在生态上对盐度不太敏感,因为区室化使它们能够将基本代谢过程与细胞膜分离。此外,细菌进一步和更频繁地扩散可能会阻碍局部适应。最终,基于 DNA 的环境监测扩展了我们对微生物多样性模式和潜在因素的理解。40
(iv) 申请人应在申请中包括有关项目地点中切萨皮克湾中上游中盐度水域(即盐度为千分之五至十八)内角草 (Zannichellia palustris) 的存在、不存在或接近程度的信息。角草的分布信息需要申请人在每年 5 月 1 日至 6 月 15 日期间对该区域进行最近的实地调查(即雇用具有相关经验的调查队)。角草在马里兰州切萨皮克湾低盐度水域地图附录 B 中所示的地理排除线上游和马里兰州大西洋沿岸海湾的潮汐水域中不太普遍或不出现。因此,这些区域不需要有关角草存在或接近程度的文件。申请人可以请求工程兵团对角草进行调查;但是,这将需要 B 类审查,并且可能会导致审查时间严重延迟。
用于为海洋中的无人水下航行器 (UUV) 或自主传感系统提供动力的热梯度能量产生技术主要处于研发阶段或以有限的规模商业化应用,而盐度梯度能量产生技术尚未得到充分研究。对适合长期部署的自供电 UUV 的需求日益增长,需要进一步研究小规模海洋梯度能量系统。在本研究中,我们对利用海洋热梯度或盐度梯度能量为 UUV 提供动力进行了全面的回顾,重点关注滑翔机和剖面浮标。基于相变材料 (PCM) 的 UUV 热梯度能量系统无法提供为自主传感系统提供动力所需的能量,因为这些系统的能量转换效率低。除了通过开发更高效的机电系统来降低能耗之外,增强 PCM 的热导率还可以通过提高 UUV 的发电率来帮助应对这一挑战。其他一些新兴技术,如热电发电机、形状记忆合金和小型热力循环系统,已显示出为 UUV 提供动力的潜力,但它们仍处于实验室测试或概念设计阶段。基于盐度梯度、反电渗析和压力延迟渗透的最先进发电技术在经济上仍然不适合大规模部署,主要是因为在恶劣的盐环境中运行所需的组件成本高昂。我们的可行性评估表明,现有的盐度梯度发电技术不能直接为公海中的 UUV 提供动力。